Matches in SemOpenAlex for { <https://semopenalex.org/work/W2489834239> ?p ?o ?g. }
- W2489834239 endingPage "35" @default.
- W2489834239 startingPage "13" @default.
- W2489834239 abstract "Viewing the language of modal as a language for describing directed graphs, a natural type of directed graph to study modally is one where the nodes are sets and the edge relation is the subset or superset relation. A well-known example from the literature on intuitionistic is the class of Medvedev frames$${langle W, Rrangle}$$?W,R? where W is the set of nonempty subsets of some nonempty finite set S, and xRy iff $${xsupseteq y}$$x?y, or more liberally, where $${langle W, Rrangle}$$?W,R? is isomorphic as a directed graph to $${langle wp(S)setminus{emptyset},supseteqrangle}$$??(S){?},??. Prucnal (Stud Logica 38(3):247---262, 1979) proved that the modal of Medvedev frames is not finitely axiomatizable. Here we continue the study of Medvedev frames with extended modal languages. Our results concern definability. We show that the class of Medvedev frames is definable by a formula in the language of tense logic, i.e., with a converse modality for quantifying over supersets in Medvedev frames, extended with any one of the following standard devices: nominals (for naming nodes), a difference modality (for quantifying over those y such that $${xnot= y}$$x?y), or a complement modality (for quantifying over those y such that $${xnotsupseteq y}$$x?y). It follows that either the of Medvedev frames in one of these tense languages is finitely axiomatizable--which would answer the open question of whether Medvedev's (Sov Math Dokl 7:857---860, 1966) logic of finite problems is decidable--or else the minimal logics in these languages extended with our defining formulas are the beginnings of infinite sequences of frame-incomplete logics." @default.
- W2489834239 created "2016-08-23" @default.
- W2489834239 creator A5088813725 @default.
- W2489834239 date "2016-10-18" @default.
- W2489834239 modified "2023-09-26" @default.
- W2489834239 title "On the Modal Logic of Subset and Superset: Tense Logic over Medvedev Frames" @default.
- W2489834239 cites W130671143 @default.
- W2489834239 cites W1509441924 @default.
- W2489834239 cites W1530375570 @default.
- W2489834239 cites W1561277172 @default.
- W2489834239 cites W1609647769 @default.
- W2489834239 cites W181827699 @default.
- W2489834239 cites W1976647940 @default.
- W2489834239 cites W1981936535 @default.
- W2489834239 cites W1984575571 @default.
- W2489834239 cites W1998532035 @default.
- W2489834239 cites W2008952614 @default.
- W2489834239 cites W2069506349 @default.
- W2489834239 cites W2074144566 @default.
- W2489834239 cites W2078034809 @default.
- W2489834239 cites W2083987012 @default.
- W2489834239 cites W2091330336 @default.
- W2489834239 cites W2153417525 @default.
- W2489834239 cites W2156708691 @default.
- W2489834239 cites W2164389533 @default.
- W2489834239 cites W2261579262 @default.
- W2489834239 cites W4206038654 @default.
- W2489834239 cites W4211144022 @default.
- W2489834239 cites W4239097602 @default.
- W2489834239 cites W4250241526 @default.
- W2489834239 cites W1843798910 @default.
- W2489834239 cites W2101263826 @default.
- W2489834239 doi "https://doi.org/10.1007/s11225-016-9680-1" @default.
- W2489834239 hasPublicationYear "2016" @default.
- W2489834239 type Work @default.
- W2489834239 sameAs 2489834239 @default.
- W2489834239 citedByCount "4" @default.
- W2489834239 countsByYear W24898342392018 @default.
- W2489834239 countsByYear W24898342392019 @default.
- W2489834239 countsByYear W24898342392022 @default.
- W2489834239 crossrefType "journal-article" @default.
- W2489834239 hasAuthorship W2489834239A5088813725 @default.
- W2489834239 hasBestOaLocation W24898342392 @default.
- W2489834239 hasConcept C102993220 @default.
- W2489834239 hasConcept C11191006 @default.
- W2489834239 hasConcept C114092440 @default.
- W2489834239 hasConcept C119599485 @default.
- W2489834239 hasConcept C127413603 @default.
- W2489834239 hasConcept C138885662 @default.
- W2489834239 hasConcept C154945302 @default.
- W2489834239 hasConcept C155092808 @default.
- W2489834239 hasConcept C165801399 @default.
- W2489834239 hasConcept C172385210 @default.
- W2489834239 hasConcept C185592680 @default.
- W2489834239 hasConcept C188027245 @default.
- W2489834239 hasConcept C203659156 @default.
- W2489834239 hasConcept C27508121 @default.
- W2489834239 hasConcept C2777796570 @default.
- W2489834239 hasConcept C33923547 @default.
- W2489834239 hasConcept C41008148 @default.
- W2489834239 hasConcept C41895202 @default.
- W2489834239 hasConcept C71139939 @default.
- W2489834239 hasConcept C94375191 @default.
- W2489834239 hasConceptScore W2489834239C102993220 @default.
- W2489834239 hasConceptScore W2489834239C11191006 @default.
- W2489834239 hasConceptScore W2489834239C114092440 @default.
- W2489834239 hasConceptScore W2489834239C119599485 @default.
- W2489834239 hasConceptScore W2489834239C127413603 @default.
- W2489834239 hasConceptScore W2489834239C138885662 @default.
- W2489834239 hasConceptScore W2489834239C154945302 @default.
- W2489834239 hasConceptScore W2489834239C155092808 @default.
- W2489834239 hasConceptScore W2489834239C165801399 @default.
- W2489834239 hasConceptScore W2489834239C172385210 @default.
- W2489834239 hasConceptScore W2489834239C185592680 @default.
- W2489834239 hasConceptScore W2489834239C188027245 @default.
- W2489834239 hasConceptScore W2489834239C203659156 @default.
- W2489834239 hasConceptScore W2489834239C27508121 @default.
- W2489834239 hasConceptScore W2489834239C2777796570 @default.
- W2489834239 hasConceptScore W2489834239C33923547 @default.
- W2489834239 hasConceptScore W2489834239C41008148 @default.
- W2489834239 hasConceptScore W2489834239C41895202 @default.
- W2489834239 hasConceptScore W2489834239C71139939 @default.
- W2489834239 hasConceptScore W2489834239C94375191 @default.
- W2489834239 hasIssue "1" @default.
- W2489834239 hasLocation W24898342391 @default.
- W2489834239 hasLocation W24898342392 @default.
- W2489834239 hasOpenAccess W2489834239 @default.
- W2489834239 hasPrimaryLocation W24898342391 @default.
- W2489834239 hasRelatedWork W1536151545 @default.
- W2489834239 hasRelatedWork W1537541219 @default.
- W2489834239 hasRelatedWork W1538818581 @default.
- W2489834239 hasRelatedWork W1586491492 @default.
- W2489834239 hasRelatedWork W1909183225 @default.
- W2489834239 hasRelatedWork W2101793126 @default.
- W2489834239 hasRelatedWork W2134850491 @default.
- W2489834239 hasRelatedWork W2188462059 @default.
- W2489834239 hasRelatedWork W2496667051 @default.
- W2489834239 hasRelatedWork W830045649 @default.