Matches in SemOpenAlex for { <https://semopenalex.org/work/W2491992013> ?p ?o ?g. }
- W2491992013 endingPage "2131" @default.
- W2491992013 startingPage "2122" @default.
- W2491992013 abstract "This study proposes a speech enhancement method based on compressive sensing. The main procedures involved in the proposed method are performed in the frequency domain. First, an overcomplete dictionary is constructed from the trained speech frames. The atoms of this redundant dictionary are spectrum vectors that are trained by the K-SVD algorithm to ensure the sparsity of the dictionary. For a noisy speech spectrum, formant detection and a quasi-SNR criterion are first utilized to determine whether a frequency bin in the spectrogram is reliable, and a corresponding mask is designed. The mask-extracted reliable components in a speech spectrum are regarded as partial observations and a measurement matrix is constructed. The problem can therefore be treated as a compressive sensing problem. The K atoms of a K-sparsity speech spectrum are found using an orthogonal matching pursuit algorithm. Because the K atoms form the speech signal subspace, the removal of the noise projected onto these K atoms is achieved by multiplying the noisy spectrum with the optimized gain that corresponds to each selected atom. The proposed method is experimentally compared with the baseline methods and demonstrates its superiority." @default.
- W2491992013 created "2016-08-23" @default.
- W2491992013 creator A5026413645 @default.
- W2491992013 creator A5029325015 @default.
- W2491992013 creator A5041888295 @default.
- W2491992013 creator A5058560253 @default.
- W2491992013 creator A5081356218 @default.
- W2491992013 creator A5081452650 @default.
- W2491992013 date "2016-11-01" @default.
- W2491992013 modified "2023-10-11" @default.
- W2491992013 title "Compressive Sensing-Based Speech Enhancement" @default.
- W2491992013 cites W1552314771 @default.
- W2491992013 cites W1963970749 @default.
- W2491992013 cites W1968250309 @default.
- W2491992013 cites W1970895676 @default.
- W2491992013 cites W1974387177 @default.
- W2491992013 cites W1998749584 @default.
- W2491992013 cites W1999846783 @default.
- W2491992013 cites W2000916836 @default.
- W2491992013 cites W2029176866 @default.
- W2491992013 cites W2044083107 @default.
- W2491992013 cites W2046674752 @default.
- W2491992013 cites W2048510784 @default.
- W2491992013 cites W2061678360 @default.
- W2491992013 cites W2062083417 @default.
- W2491992013 cites W2074354966 @default.
- W2491992013 cites W2078204800 @default.
- W2491992013 cites W2096779346 @default.
- W2491992013 cites W2104424128 @default.
- W2491992013 cites W2105877514 @default.
- W2491992013 cites W2114338738 @default.
- W2491992013 cites W2119667497 @default.
- W2491992013 cites W2120689488 @default.
- W2491992013 cites W2121973264 @default.
- W2491992013 cites W2127271355 @default.
- W2491992013 cites W2128402994 @default.
- W2491992013 cites W2128653836 @default.
- W2491992013 cites W2128659236 @default.
- W2491992013 cites W2129131372 @default.
- W2491992013 cites W2134925458 @default.
- W2491992013 cites W2136990130 @default.
- W2491992013 cites W2137945624 @default.
- W2491992013 cites W2145962650 @default.
- W2491992013 cites W2151693816 @default.
- W2491992013 cites W2156427286 @default.
- W2491992013 cites W2160547390 @default.
- W2491992013 cites W2160978899 @default.
- W2491992013 cites W2164452299 @default.
- W2491992013 cites W2167577940 @default.
- W2491992013 cites W2293318283 @default.
- W2491992013 cites W3147539069 @default.
- W2491992013 cites W4245919820 @default.
- W2491992013 cites W4250955649 @default.
- W2491992013 doi "https://doi.org/10.1109/taslp.2016.2598306" @default.
- W2491992013 hasPublicationYear "2016" @default.
- W2491992013 type Work @default.
- W2491992013 sameAs 2491992013 @default.
- W2491992013 citedByCount "43" @default.
- W2491992013 countsByYear W24919920132016 @default.
- W2491992013 countsByYear W24919920132017 @default.
- W2491992013 countsByYear W24919920132018 @default.
- W2491992013 countsByYear W24919920132019 @default.
- W2491992013 countsByYear W24919920132020 @default.
- W2491992013 countsByYear W24919920132021 @default.
- W2491992013 countsByYear W24919920132022 @default.
- W2491992013 countsByYear W24919920132023 @default.
- W2491992013 crossrefType "journal-article" @default.
- W2491992013 hasAuthorship W2491992013A5026413645 @default.
- W2491992013 hasAuthorship W2491992013A5029325015 @default.
- W2491992013 hasAuthorship W2491992013A5041888295 @default.
- W2491992013 hasAuthorship W2491992013A5058560253 @default.
- W2491992013 hasAuthorship W2491992013A5081356218 @default.
- W2491992013 hasAuthorship W2491992013A5081452650 @default.
- W2491992013 hasConcept C154945302 @default.
- W2491992013 hasConcept C163294075 @default.
- W2491992013 hasConcept C2776182073 @default.
- W2491992013 hasConcept C28490314 @default.
- W2491992013 hasConcept C41008148 @default.
- W2491992013 hasConceptScore W2491992013C154945302 @default.
- W2491992013 hasConceptScore W2491992013C163294075 @default.
- W2491992013 hasConceptScore W2491992013C2776182073 @default.
- W2491992013 hasConceptScore W2491992013C28490314 @default.
- W2491992013 hasConceptScore W2491992013C41008148 @default.
- W2491992013 hasFunder F4320322795 @default.
- W2491992013 hasIssue "11" @default.
- W2491992013 hasLocation W24919920131 @default.
- W2491992013 hasOpenAccess W2491992013 @default.
- W2491992013 hasPrimaryLocation W24919920131 @default.
- W2491992013 hasRelatedWork W1600259599 @default.
- W2491992013 hasRelatedWork W2166831097 @default.
- W2491992013 hasRelatedWork W2312116756 @default.
- W2491992013 hasRelatedWork W2368779261 @default.
- W2491992013 hasRelatedWork W2653598178 @default.
- W2491992013 hasRelatedWork W2778699561 @default.
- W2491992013 hasRelatedWork W2794438528 @default.
- W2491992013 hasRelatedWork W2893763841 @default.
- W2491992013 hasRelatedWork W2995996972 @default.
- W2491992013 hasRelatedWork W3096184950 @default.