Matches in SemOpenAlex for { <https://semopenalex.org/work/W2492045119> ?p ?o ?g. }
- W2492045119 endingPage "568" @default.
- W2492045119 startingPage "559" @default.
- W2492045119 abstract "Abstract Spark ignition (SI) engines have a nonlinear dynamic system with inherent uncertainties and unpredictable disturbances. The identification of a nonlinear system is vital in many fields of engineering. In this study, SI engine torque is identified from an input–output measurement. This study aims to propose a dynamic nonlinear model that uses an adaptive neuro‐fuzzy inference system and a nonlinear auto‐regressive with exogenous input structure to identify the dynamic nonlinear behavior of an SI engine. Considerable good performance is achieved using the adaptive neuro‐fuzzy inference system nonlinear auto‐regressive with exogenous input method. For model validation, the proposed method is compared with the more conventional identification approach called the Hammerstein method. The results show that the two methods are in excellent agreement. The Hammerstein model was chosen because its identification result of the SI system was studied previously by the author. Validation results prove that the ability of the proposed model can capture the highly nonlinear behavior of the SI system." @default.
- W2492045119 created "2016-08-23" @default.
- W2492045119 creator A5030386656 @default.
- W2492045119 creator A5042267232 @default.
- W2492045119 date "2016-08-05" @default.
- W2492045119 modified "2023-10-04" @default.
- W2492045119 title "Nonlinear identification of a spark ignition engine torque based on ANFIS with NARX method" @default.
- W2492045119 cites W1490318080 @default.
- W2492045119 cites W1565616500 @default.
- W2492045119 cites W1679253237 @default.
- W2492045119 cites W1966654857 @default.
- W2492045119 cites W1972947277 @default.
- W2492045119 cites W1973096758 @default.
- W2492045119 cites W1976380993 @default.
- W2492045119 cites W1979251670 @default.
- W2492045119 cites W1981274324 @default.
- W2492045119 cites W1988532633 @default.
- W2492045119 cites W2000051344 @default.
- W2492045119 cites W2012561687 @default.
- W2492045119 cites W2014990444 @default.
- W2492045119 cites W2016360490 @default.
- W2492045119 cites W2019207321 @default.
- W2492045119 cites W2020429649 @default.
- W2492045119 cites W2021395081 @default.
- W2492045119 cites W2023299403 @default.
- W2492045119 cites W2027995011 @default.
- W2492045119 cites W2034408229 @default.
- W2492045119 cites W2035722163 @default.
- W2492045119 cites W2036284448 @default.
- W2492045119 cites W2036576012 @default.
- W2492045119 cites W2036721013 @default.
- W2492045119 cites W2042249986 @default.
- W2492045119 cites W2056346542 @default.
- W2492045119 cites W2057368589 @default.
- W2492045119 cites W2057812047 @default.
- W2492045119 cites W2068233395 @default.
- W2492045119 cites W2076378832 @default.
- W2492045119 cites W2079325629 @default.
- W2492045119 cites W2081550461 @default.
- W2492045119 cites W2092025634 @default.
- W2492045119 cites W2093367637 @default.
- W2492045119 cites W2096102226 @default.
- W2492045119 cites W2102082041 @default.
- W2492045119 cites W2114976889 @default.
- W2492045119 cites W2129645442 @default.
- W2492045119 cites W2158717576 @default.
- W2492045119 cites W2484699728 @default.
- W2492045119 cites W2500834194 @default.
- W2492045119 cites W4238586295 @default.
- W2492045119 doi "https://doi.org/10.1111/exsy.12172" @default.
- W2492045119 hasPublicationYear "2016" @default.
- W2492045119 type Work @default.
- W2492045119 sameAs 2492045119 @default.
- W2492045119 citedByCount "7" @default.
- W2492045119 countsByYear W24920451192017 @default.
- W2492045119 countsByYear W24920451192018 @default.
- W2492045119 countsByYear W24920451192019 @default.
- W2492045119 countsByYear W24920451192022 @default.
- W2492045119 crossrefType "journal-article" @default.
- W2492045119 hasAuthorship W2492045119A5030386656 @default.
- W2492045119 hasAuthorship W2492045119A5042267232 @default.
- W2492045119 hasConcept C116834253 @default.
- W2492045119 hasConcept C119247159 @default.
- W2492045119 hasConcept C121332964 @default.
- W2492045119 hasConcept C127413603 @default.
- W2492045119 hasConcept C133731056 @default.
- W2492045119 hasConcept C144171764 @default.
- W2492045119 hasConcept C146978453 @default.
- W2492045119 hasConcept C149782125 @default.
- W2492045119 hasConcept C154945302 @default.
- W2492045119 hasConcept C158622935 @default.
- W2492045119 hasConcept C159063594 @default.
- W2492045119 hasConcept C159877910 @default.
- W2492045119 hasConcept C186108316 @default.
- W2492045119 hasConcept C195975749 @default.
- W2492045119 hasConcept C199360897 @default.
- W2492045119 hasConcept C22157029 @default.
- W2492045119 hasConcept C2775924081 @default.
- W2492045119 hasConcept C2777703250 @default.
- W2492045119 hasConcept C2781215313 @default.
- W2492045119 hasConcept C2988105877 @default.
- W2492045119 hasConcept C33923547 @default.
- W2492045119 hasConcept C41008148 @default.
- W2492045119 hasConcept C42536954 @default.
- W2492045119 hasConcept C47446073 @default.
- W2492045119 hasConcept C50644808 @default.
- W2492045119 hasConcept C58166 @default.
- W2492045119 hasConcept C59822182 @default.
- W2492045119 hasConcept C62520636 @default.
- W2492045119 hasConcept C67186912 @default.
- W2492045119 hasConcept C77088390 @default.
- W2492045119 hasConcept C86803240 @default.
- W2492045119 hasConcept C97355855 @default.
- W2492045119 hasConceptScore W2492045119C116834253 @default.
- W2492045119 hasConceptScore W2492045119C119247159 @default.
- W2492045119 hasConceptScore W2492045119C121332964 @default.
- W2492045119 hasConceptScore W2492045119C127413603 @default.
- W2492045119 hasConceptScore W2492045119C133731056 @default.