Matches in SemOpenAlex for { <https://semopenalex.org/work/W2492574366> ?p ?o ?g. }
- W2492574366 endingPage "264" @default.
- W2492574366 startingPage "225" @default.
- W2492574366 abstract "A new method is presented for the calculation of the reaction matrix $G$ of the Brueckner-Goldstone theory. The spectrum of the intermediate states is replaced by a reference spectrum of the form $A+B{k}^{2}$ where the constants $A$ and $B$ are chosen so as to approximate, as closely as possible, the actual particle energies for $k$ between 3 and 6 ${mathrm{F}}^{ensuremath{-}1}$. The reason for this choice is explained. With the reference spectrum, the Brueckner integral equation reduces to a differential equation which is easily solved. The case of a repulsive core can be solved explicitly, and can be summed over angular momentum, taking into account the correct statistical weights. If an attractive potential is added to the repulsive core, a simple modified Born approximation can be developed. Noncentral forces, such as tensor forces, are considered.The actual $G$ matrix, ${G}^{N}$, is calculated from the reference matrix ${G}^{R}$. It is shown that this can be done to sufficient accuracy (0.1 to 0.2 MeV per nucleon) by a simple quadrature. The difference ${G}^{N}ensuremath{-}{G}^{R}$ arises mainly from the Pauli principle which is not taken into account in ${G}^{R}$. A small correction, less than 1 MeV per nucleon, arises from the inaccuracy of the reference spectrum. This shows that the details of the particle energy spectrum are not important for the calculation of the nuclear binding energy.The particle energy spectrum is carefully investigated. In agreement with Brueckner and Goldman, the $G$ matrices determining the potential energy of states in the Fermi sea are calculated on the energy shell, and a more detailed justification is given for this procedure. Those for states above the Fermi sea are calculated off the energy shell. This, in combination with the repulsive core, has the consequence of making the potential energy very large and positive for large $k$, corresponding to an effective mass between 0.8 and 0.9 for highly excited states. In addition, there is an energy gap at the Fermi momentum, a feature which helps to justify the reference spectrum.A modified Moszkowski-Scott separation into short- and long-range potentials is developed and gives, in second order, results accurate to better than 0.1 MeV per particle. The wave functions of interacting particles are calculated in the reference spectrum approximation for central and tensor forces." @default.
- W2492574366 created "2016-08-23" @default.
- W2492574366 creator A5006261285 @default.
- W2492574366 creator A5052560020 @default.
- W2492574366 creator A5075738642 @default.
- W2492574366 date "1963-01-01" @default.
- W2492574366 modified "2023-10-14" @default.
- W2492574366 title "Reference Spectrum Method for Nuclear Matter" @default.
- W2492574366 cites W1963556485 @default.
- W2492574366 cites W1965884354 @default.
- W2492574366 cites W1968379930 @default.
- W2492574366 cites W1970572012 @default.
- W2492574366 cites W1972263923 @default.
- W2492574366 cites W1977566437 @default.
- W2492574366 cites W1988240623 @default.
- W2492574366 cites W1991942394 @default.
- W2492574366 cites W1993418824 @default.
- W2492574366 cites W1994862364 @default.
- W2492574366 cites W1995481417 @default.
- W2492574366 cites W1996610377 @default.
- W2492574366 cites W1997775783 @default.
- W2492574366 cites W2006383811 @default.
- W2492574366 cites W2006459530 @default.
- W2492574366 cites W2014437371 @default.
- W2492574366 cites W2017702661 @default.
- W2492574366 cites W2035098406 @default.
- W2492574366 cites W2048055073 @default.
- W2492574366 cites W2051912867 @default.
- W2492574366 cites W2053756451 @default.
- W2492574366 cites W2070195543 @default.
- W2492574366 cites W2071984669 @default.
- W2492574366 cites W2072503391 @default.
- W2492574366 cites W2073239440 @default.
- W2492574366 cites W2074113739 @default.
- W2492574366 cites W2082361019 @default.
- W2492574366 cites W2085504840 @default.
- W2492574366 cites W2091196872 @default.
- W2492574366 cites W2094683792 @default.
- W2492574366 cites W2110296172 @default.
- W2492574366 cites W2135708310 @default.
- W2492574366 cites W2161663817 @default.
- W2492574366 cites W3175629616 @default.
- W2492574366 cites W4241476164 @default.
- W2492574366 cites W4248153585 @default.
- W2492574366 doi "https://doi.org/10.1103/physrev.129.225" @default.
- W2492574366 hasPublicationYear "1963" @default.
- W2492574366 type Work @default.
- W2492574366 sameAs 2492574366 @default.
- W2492574366 citedByCount "400" @default.
- W2492574366 countsByYear W24925743662012 @default.
- W2492574366 countsByYear W24925743662013 @default.
- W2492574366 countsByYear W24925743662014 @default.
- W2492574366 countsByYear W24925743662015 @default.
- W2492574366 countsByYear W24925743662016 @default.
- W2492574366 countsByYear W24925743662017 @default.
- W2492574366 countsByYear W24925743662018 @default.
- W2492574366 countsByYear W24925743662019 @default.
- W2492574366 countsByYear W24925743662020 @default.
- W2492574366 countsByYear W24925743662021 @default.
- W2492574366 countsByYear W24925743662022 @default.
- W2492574366 crossrefType "journal-article" @default.
- W2492574366 hasAuthorship W2492574366A5006261285 @default.
- W2492574366 hasAuthorship W2492574366A5052560020 @default.
- W2492574366 hasAuthorship W2492574366A5075738642 @default.
- W2492574366 hasConcept C110340908 @default.
- W2492574366 hasConcept C121332964 @default.
- W2492574366 hasConcept C155281189 @default.
- W2492574366 hasConcept C156778621 @default.
- W2492574366 hasConcept C165410206 @default.
- W2492574366 hasConcept C172695262 @default.
- W2492574366 hasConcept C184779094 @default.
- W2492574366 hasConcept C202444582 @default.
- W2492574366 hasConcept C3079626 @default.
- W2492574366 hasConcept C33923547 @default.
- W2492574366 hasConcept C37914503 @default.
- W2492574366 hasConcept C62520636 @default.
- W2492574366 hasConceptScore W2492574366C110340908 @default.
- W2492574366 hasConceptScore W2492574366C121332964 @default.
- W2492574366 hasConceptScore W2492574366C155281189 @default.
- W2492574366 hasConceptScore W2492574366C156778621 @default.
- W2492574366 hasConceptScore W2492574366C165410206 @default.
- W2492574366 hasConceptScore W2492574366C172695262 @default.
- W2492574366 hasConceptScore W2492574366C184779094 @default.
- W2492574366 hasConceptScore W2492574366C202444582 @default.
- W2492574366 hasConceptScore W2492574366C3079626 @default.
- W2492574366 hasConceptScore W2492574366C33923547 @default.
- W2492574366 hasConceptScore W2492574366C37914503 @default.
- W2492574366 hasConceptScore W2492574366C62520636 @default.
- W2492574366 hasIssue "1" @default.
- W2492574366 hasLocation W24925743661 @default.
- W2492574366 hasOpenAccess W2492574366 @default.
- W2492574366 hasPrimaryLocation W24925743661 @default.
- W2492574366 hasRelatedWork W1978318699 @default.
- W2492574366 hasRelatedWork W2025424406 @default.
- W2492574366 hasRelatedWork W2049514290 @default.
- W2492574366 hasRelatedWork W2059613462 @default.
- W2492574366 hasRelatedWork W2084164382 @default.
- W2492574366 hasRelatedWork W2147640223 @default.