Matches in SemOpenAlex for { <https://semopenalex.org/work/W2493032102> ?p ?o ?g. }
- W2493032102 endingPage "93" @default.
- W2493032102 startingPage "82" @default.
- W2493032102 abstract "Predicting disease dynamics during an epidemic is an important aspect of e-Health applications. In such prediction, Realistic Contact Networks (RCNs) have been widely used to characterize disease dynamics. The structure of such networks is dynamically changed during an epidemic. Capturing such kind of dynamic structure is the basis of prediction. With the popularity of mobile devices, it is possible to capture the dynamic change of the network structure. On this basis, in this study, we evaluate the impact of the network structure on disease dynamics, by analyzing massive spatiotemporal data collected by mobile devices. These devices are carried by the volunteers of Ebola outbreak areas. Based on the results of this evaluation, a model is designed to recognize the dynamic structure of RCNs. On the basis of this model, we propose a prediction algorithm for disease dynamics. By extensive experiments, we show that our algorithm improves the accuracy of the disease prediction." @default.
- W2493032102 created "2016-08-23" @default.
- W2493032102 creator A5007723627 @default.
- W2493032102 creator A5045639669 @default.
- W2493032102 creator A5051864401 @default.
- W2493032102 creator A5065559740 @default.
- W2493032102 date "2017-02-01" @default.
- W2493032102 modified "2023-10-12" @default.
- W2493032102 title "Reality mining: A prediction algorithm for disease dynamics based on mobile big data" @default.
- W2493032102 cites W1961375973 @default.
- W2493032102 cites W1965499304 @default.
- W2493032102 cites W1975447198 @default.
- W2493032102 cites W1986359549 @default.
- W2493032102 cites W2033193852 @default.
- W2493032102 cites W2036315044 @default.
- W2493032102 cites W2040956707 @default.
- W2493032102 cites W2047703092 @default.
- W2493032102 cites W2052838081 @default.
- W2493032102 cites W2054137409 @default.
- W2493032102 cites W2055887948 @default.
- W2493032102 cites W2063571559 @default.
- W2493032102 cites W2064128684 @default.
- W2493032102 cites W2064766914 @default.
- W2493032102 cites W2073017712 @default.
- W2493032102 cites W2119560885 @default.
- W2493032102 cites W2120810469 @default.
- W2493032102 cites W2121362530 @default.
- W2493032102 cites W2122980269 @default.
- W2493032102 cites W2125270265 @default.
- W2493032102 cites W2129521545 @default.
- W2493032102 cites W2145124315 @default.
- W2493032102 cites W2149055390 @default.
- W2493032102 cites W2152132956 @default.
- W2493032102 cites W2158397222 @default.
- W2493032102 cites W2170834676 @default.
- W2493032102 cites W2335126921 @default.
- W2493032102 cites W2963289400 @default.
- W2493032102 cites W3100923283 @default.
- W2493032102 cites W4210710163 @default.
- W2493032102 cites W626411881 @default.
- W2493032102 doi "https://doi.org/10.1016/j.ins.2016.07.075" @default.
- W2493032102 hasPublicationYear "2017" @default.
- W2493032102 type Work @default.
- W2493032102 sameAs 2493032102 @default.
- W2493032102 citedByCount "30" @default.
- W2493032102 countsByYear W24930321022017 @default.
- W2493032102 countsByYear W24930321022018 @default.
- W2493032102 countsByYear W24930321022019 @default.
- W2493032102 countsByYear W24930321022020 @default.
- W2493032102 countsByYear W24930321022022 @default.
- W2493032102 countsByYear W24930321022023 @default.
- W2493032102 crossrefType "journal-article" @default.
- W2493032102 hasAuthorship W2493032102A5007723627 @default.
- W2493032102 hasAuthorship W2493032102A5045639669 @default.
- W2493032102 hasAuthorship W2493032102A5051864401 @default.
- W2493032102 hasAuthorship W2493032102A5065559740 @default.
- W2493032102 hasConcept C111472728 @default.
- W2493032102 hasConcept C119857082 @default.
- W2493032102 hasConcept C121332964 @default.
- W2493032102 hasConcept C124101348 @default.
- W2493032102 hasConcept C12426560 @default.
- W2493032102 hasConcept C138885662 @default.
- W2493032102 hasConcept C145912823 @default.
- W2493032102 hasConcept C154945302 @default.
- W2493032102 hasConcept C15744967 @default.
- W2493032102 hasConcept C24890656 @default.
- W2493032102 hasConcept C2524010 @default.
- W2493032102 hasConcept C2780586970 @default.
- W2493032102 hasConcept C33923547 @default.
- W2493032102 hasConcept C41008148 @default.
- W2493032102 hasConcept C75553542 @default.
- W2493032102 hasConcept C75684735 @default.
- W2493032102 hasConcept C77805123 @default.
- W2493032102 hasConceptScore W2493032102C111472728 @default.
- W2493032102 hasConceptScore W2493032102C119857082 @default.
- W2493032102 hasConceptScore W2493032102C121332964 @default.
- W2493032102 hasConceptScore W2493032102C124101348 @default.
- W2493032102 hasConceptScore W2493032102C12426560 @default.
- W2493032102 hasConceptScore W2493032102C138885662 @default.
- W2493032102 hasConceptScore W2493032102C145912823 @default.
- W2493032102 hasConceptScore W2493032102C154945302 @default.
- W2493032102 hasConceptScore W2493032102C15744967 @default.
- W2493032102 hasConceptScore W2493032102C24890656 @default.
- W2493032102 hasConceptScore W2493032102C2524010 @default.
- W2493032102 hasConceptScore W2493032102C2780586970 @default.
- W2493032102 hasConceptScore W2493032102C33923547 @default.
- W2493032102 hasConceptScore W2493032102C41008148 @default.
- W2493032102 hasConceptScore W2493032102C75553542 @default.
- W2493032102 hasConceptScore W2493032102C75684735 @default.
- W2493032102 hasConceptScore W2493032102C77805123 @default.
- W2493032102 hasFunder F4320321001 @default.
- W2493032102 hasLocation W24930321021 @default.
- W2493032102 hasLocation W24930321022 @default.
- W2493032102 hasOpenAccess W2493032102 @default.
- W2493032102 hasPrimaryLocation W24930321021 @default.
- W2493032102 hasRelatedWork W1556739848 @default.
- W2493032102 hasRelatedWork W2104700403 @default.
- W2493032102 hasRelatedWork W2133515697 @default.