Matches in SemOpenAlex for { <https://semopenalex.org/work/W2493082884> ?p ?o ?g. }
- W2493082884 abstract "With the advancement of computer technology, demand for more accurate and intelligent monitoring systems has also risen. The use of computer vision and video analysis range from industrial inspection to surveillance. Object detection and segmentation are the first and fundamental task in the analysis of dynamic scenes. Traditionally, this detection and segmentation are typically done through temporal differencing or statistical modelling methods. One of the most widely used background modelling and segmentation algorithms is the Mixture of Gaussians method developed by Stauffer and Grimson (1999). During the past decade many such algorithms have been developed ranging from parametric to non-parametric algorithms. Many of them utilise pixel intensities to model the background, but some use texture properties such as Local Binary Patterns. These algorithms function quite well under normal environmental conditions and each has its own set of advantages and short comings. However, there are two drawbacks in common. The first is that of the stationary object problem; when moving objects become stationary, they get merged into the background. The second problem is that of light changes; when rapid illumination changes occur in the environment, these background modelling algorithms produce large areas of false positives. These algorithms are capable of adapting to the change, however, the quality of the segmentation is very poor during the adaptation phase. In this thesis, a framework to suppress these false positives is introduced. Image properties such as edges and textures are utilised to reduce the amount of false positives during adaptation phase. The framework is built on the idea of sequential pattern recognition. In any background modelling algorithm, the importance of multiple image features as well as different spatial scales cannot be overlooked. Failure to focus attention on these two factors will result in difficulty to detect and reduce false alarms caused by rapid light change and other conditions. The use of edge features in false alarm suppression is also explored. Edges are somewhat more resistant to environmental changes in video scenes. The assumption here is that regardless of environmental changes, such as that of illumination change, the edges of the objects should remain the same. The edge based approach is tested on several videos containing rapid light changes and shows promising results. Texture is then used to analyse video images and remove false alarm regions. Texture gradient approach and Laws Texture Energy Measures are used to find and remove false positives. It is found that Laws Texture Energy Measure performs better than the gradient approach. The results of using edges, texture and different combination of the two in false positive suppression are also presented in this work. This false positive suppression framework is applied to a smart house senario that uses cameras to model ”virtual sensors” to detect interactions of occupants with devices. Results show the accuracy of virtual sensors compared with the ground truth is improved." @default.
- W2493082884 created "2016-08-23" @default.
- W2493082884 creator A5061158999 @default.
- W2493082884 date "2007-01-01" @default.
- W2493082884 modified "2023-09-28" @default.
- W2493082884 title "Virtual image sensors to track human activity in a smart house" @default.
- W2493082884 cites W134990542 @default.
- W2493082884 cites W145358992 @default.
- W2493082884 cites W1499486838 @default.
- W2493082884 cites W1837251330 @default.
- W2493082884 cites W1887887144 @default.
- W2493082884 cites W1980183801 @default.
- W2493082884 cites W1993508153 @default.
- W2493082884 cites W1995303293 @default.
- W2493082884 cites W2003370853 @default.
- W2493082884 cites W2017474236 @default.
- W2493082884 cites W2063690897 @default.
- W2493082884 cites W2098305432 @default.
- W2493082884 cites W2102625004 @default.
- W2493082884 cites W2110155975 @default.
- W2493082884 cites W2111247507 @default.
- W2493082884 cites W2112162870 @default.
- W2493082884 cites W2113137767 @default.
- W2493082884 cites W2114701396 @default.
- W2493082884 cites W2119300483 @default.
- W2493082884 cites W2121274305 @default.
- W2493082884 cites W2125593672 @default.
- W2493082884 cites W2130260536 @default.
- W2493082884 cites W2137574036 @default.
- W2493082884 cites W2140235142 @default.
- W2493082884 cites W2143373691 @default.
- W2493082884 cites W2143516773 @default.
- W2493082884 cites W2144155874 @default.
- W2493082884 cites W2145023731 @default.
- W2493082884 cites W2158604775 @default.
- W2493082884 cites W2162352174 @default.
- W2493082884 cites W2169282240 @default.
- W2493082884 cites W2169551590 @default.
- W2493082884 cites W2170140722 @default.
- W2493082884 cites W2175887046 @default.
- W2493082884 cites W2335978598 @default.
- W2493082884 cites W2740373864 @default.
- W2493082884 cites W2774064265 @default.
- W2493082884 hasPublicationYear "2007" @default.
- W2493082884 type Work @default.
- W2493082884 sameAs 2493082884 @default.
- W2493082884 citedByCount "0" @default.
- W2493082884 crossrefType "dissertation" @default.
- W2493082884 hasAuthorship W2493082884A5061158999 @default.
- W2493082884 hasConcept C105795698 @default.
- W2493082884 hasConcept C117251300 @default.
- W2493082884 hasConcept C120665830 @default.
- W2493082884 hasConcept C121332964 @default.
- W2493082884 hasConcept C124504099 @default.
- W2493082884 hasConcept C139807058 @default.
- W2493082884 hasConcept C153180895 @default.
- W2493082884 hasConcept C154945302 @default.
- W2493082884 hasConcept C160633673 @default.
- W2493082884 hasConcept C177264268 @default.
- W2493082884 hasConcept C199360897 @default.
- W2493082884 hasConcept C2776151529 @default.
- W2493082884 hasConcept C31972630 @default.
- W2493082884 hasConcept C33923547 @default.
- W2493082884 hasConcept C41008148 @default.
- W2493082884 hasConcept C64869954 @default.
- W2493082884 hasConcept C89600930 @default.
- W2493082884 hasConceptScore W2493082884C105795698 @default.
- W2493082884 hasConceptScore W2493082884C117251300 @default.
- W2493082884 hasConceptScore W2493082884C120665830 @default.
- W2493082884 hasConceptScore W2493082884C121332964 @default.
- W2493082884 hasConceptScore W2493082884C124504099 @default.
- W2493082884 hasConceptScore W2493082884C139807058 @default.
- W2493082884 hasConceptScore W2493082884C153180895 @default.
- W2493082884 hasConceptScore W2493082884C154945302 @default.
- W2493082884 hasConceptScore W2493082884C160633673 @default.
- W2493082884 hasConceptScore W2493082884C177264268 @default.
- W2493082884 hasConceptScore W2493082884C199360897 @default.
- W2493082884 hasConceptScore W2493082884C2776151529 @default.
- W2493082884 hasConceptScore W2493082884C31972630 @default.
- W2493082884 hasConceptScore W2493082884C33923547 @default.
- W2493082884 hasConceptScore W2493082884C41008148 @default.
- W2493082884 hasConceptScore W2493082884C64869954 @default.
- W2493082884 hasConceptScore W2493082884C89600930 @default.
- W2493082884 hasLocation W24930828841 @default.
- W2493082884 hasOpenAccess W2493082884 @default.
- W2493082884 hasPrimaryLocation W24930828841 @default.
- W2493082884 hasRelatedWork W2319700991 @default.
- W2493082884 hasRelatedWork W2761391025 @default.
- W2493082884 hasRelatedWork W2782643666 @default.
- W2493082884 hasRelatedWork W2807961163 @default.
- W2493082884 hasRelatedWork W2920915680 @default.
- W2493082884 hasRelatedWork W2964207649 @default.
- W2493082884 hasRelatedWork W2973521198 @default.
- W2493082884 hasRelatedWork W2978357896 @default.
- W2493082884 hasRelatedWork W2981773749 @default.
- W2493082884 hasRelatedWork W3000708267 @default.
- W2493082884 hasRelatedWork W3016372472 @default.
- W2493082884 hasRelatedWork W3034470582 @default.
- W2493082884 hasRelatedWork W3049137380 @default.
- W2493082884 hasRelatedWork W3113400820 @default.