Matches in SemOpenAlex for { <https://semopenalex.org/work/W2493088891> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W2493088891 endingPage "823" @default.
- W2493088891 startingPage "812" @default.
- W2493088891 abstract "We use the imbedding of the total differential operator D into a Heisenberg algebra to give a method to generate the transvectants and their multilinear generalizations using the coherent state method. This leads to tensor product decompositions where all the components play an equal role. 1. The Heisenberg algebra Consider the total differential operator D, given on the generators by Duk = uk+1 and obeying the Leibniz rule D(fg) = D(f)g + fD(g) on polynomials f, g ∈ P [u, u1, · · · ], where we denote ∂u ∂xk by uk. This defines D on P [u, u1, · · · ]. We now want to solve the following problem. Given a nonconstant f ∈ P [u, u1, · · · ], can we find f, f ∈ P [u, u1, · · · ] such that f = f +Df1, with f in a direct summand of ImD? We solve this problem by constructing a derivation F , such that KerF is a direct summand of ImD and such that D, F and E = [F ,D] form a Heisenberg algebra (cf. [SR94, SW97]). This last property allows us to find an algorithm to do the splitting over Ker E ⊕KerF ⊕ ImD in concrete cases. Since P [u, u1, · · · ] is generated by u, u1, · · · and u1, u2, · · · ∈ ImD, it seems natural to require Fu = 0 and Fuk 6= 0. Let us try Fuk = kuk−1 on the generators, and extend F by requiring it to be a derivation just like D, i.e. F(fg) = F(f)g + fF(g). Here one should remark that this is not just trial and error. The guess is inspired by looking at the standard finite dimensional irreducible representations of sl(2,R) and then taking the limit of n →∞, where n is the dimension of the representation space. This limiting behavior will explain the connection with classical invariant theory and modular functions, to be discussed in sections 5 and 6. 1See however section 8 for a quantized rule c ©0000 (copyright holder)" @default.
- W2493088891 created "2016-08-23" @default.
- W2493088891 creator A5059159255 @default.
- W2493088891 date "2000-09-01" @default.
- W2493088891 modified "2023-09-24" @default.
- W2493088891 title "Multilinear Hirota operators, modular forms and the Heisenberg algebra" @default.
- W2493088891 cites W1607719135 @default.
- W2493088891 cites W1661352576 @default.
- W2493088891 cites W174683651 @default.
- W2493088891 cites W1970617585 @default.
- W2493088891 cites W2020170046 @default.
- W2493088891 cites W2021719157 @default.
- W2493088891 cites W2074633806 @default.
- W2493088891 cites W2075852758 @default.
- W2493088891 cites W2110251684 @default.
- W2493088891 cites W98454678 @default.
- W2493088891 doi "https://doi.org/10.1142/9789812792617_0161" @default.
- W2493088891 hasPublicationYear "2000" @default.
- W2493088891 type Work @default.
- W2493088891 sameAs 2493088891 @default.
- W2493088891 citedByCount "3" @default.
- W2493088891 crossrefType "book-chapter" @default.
- W2493088891 hasAuthorship W2493088891A5059159255 @default.
- W2493088891 hasConcept C100376341 @default.
- W2493088891 hasConcept C101468663 @default.
- W2493088891 hasConcept C136119220 @default.
- W2493088891 hasConcept C14394260 @default.
- W2493088891 hasConcept C199360897 @default.
- W2493088891 hasConcept C202444582 @default.
- W2493088891 hasConcept C33923547 @default.
- W2493088891 hasConcept C41008148 @default.
- W2493088891 hasConcept C60321788 @default.
- W2493088891 hasConcept C84392682 @default.
- W2493088891 hasConceptScore W2493088891C100376341 @default.
- W2493088891 hasConceptScore W2493088891C101468663 @default.
- W2493088891 hasConceptScore W2493088891C136119220 @default.
- W2493088891 hasConceptScore W2493088891C14394260 @default.
- W2493088891 hasConceptScore W2493088891C199360897 @default.
- W2493088891 hasConceptScore W2493088891C202444582 @default.
- W2493088891 hasConceptScore W2493088891C33923547 @default.
- W2493088891 hasConceptScore W2493088891C41008148 @default.
- W2493088891 hasConceptScore W2493088891C60321788 @default.
- W2493088891 hasConceptScore W2493088891C84392682 @default.
- W2493088891 hasLocation W24930888911 @default.
- W2493088891 hasOpenAccess W2493088891 @default.
- W2493088891 hasPrimaryLocation W24930888911 @default.
- W2493088891 hasRelatedWork W104365351 @default.
- W2493088891 hasRelatedWork W1455423400 @default.
- W2493088891 hasRelatedWork W179887136 @default.
- W2493088891 hasRelatedWork W2047292683 @default.
- W2493088891 hasRelatedWork W2348125725 @default.
- W2493088891 hasRelatedWork W2810189708 @default.
- W2493088891 hasRelatedWork W3226127 @default.
- W2493088891 hasRelatedWork W4229551161 @default.
- W2493088891 hasRelatedWork W4238751845 @default.
- W2493088891 hasRelatedWork W605887985 @default.
- W2493088891 isParatext "false" @default.
- W2493088891 isRetracted "false" @default.
- W2493088891 magId "2493088891" @default.
- W2493088891 workType "book-chapter" @default.