Matches in SemOpenAlex for { <https://semopenalex.org/work/W249339976> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W249339976 abstract "This letter provides the first analytical estimation of the effects of spatial dimensions of the probability density function (PDF) of the Kardar-Parisi-Zhang equation. The PDF is computed using the instanton method within in the Martin-Rose-Siggia framework. This gives a novel approach to understand the PDFs of the width distribution and the analysis suggests that there is no limit in the upper critical dimension. anderson.johan@gmail.com 1 In nature there are many important phenomena that are driven far from equilibrium by instabilities or by external forces. Examples are diverse from forest fires to interstellar turbulence, which is constantly stirred by supernova explosions. A proper description and understanding of the multiscale interactions that are responsible for the inevitably complex dynamics in these nonequilibrium systems remains a significant challenge in classical physics. The out of equilibrium interfacial growth is another example that has attracted much attention during recent years. A description of these growth processes that have been widely recognized is a Langevin like equation by Kardar-Parisi-Zhang (KPZ) [1]. The KPZ equation is one of the simplest non-linear generalizations of the diffusion equation and is thus connected to many other areas of non-equilibrium dynamics such as the Burgers turbulence [2][3], driven diffusion and dissipative transport [4] as well as flame front propagation [5]. The KPZ equation has been studied extensively, however there are some remaining controversial issues, in particular estimates of the upper critical dimension are in the range dc = 2.8 −∞ [6][13]. The reason for searching for a particular value of the upper critical dimension (i.e. below dc there is no phase transition) is the hope of systematic expansions in dc−d in analogy with equilibrium critical phenomena. The purpose of the present work is to provide a statistical theory of interfacial growth and thereby shed light on the elusive finite upper critical dimension in the KPZ equation. We compute the tails of the probability density function (PDF) using the instanton method in the Martin-Siggia-Rose framework [17]. The instanton method is a non-perturbative way of computing the PDF tails [18][22]. The PDF tails can be viewed as a transition amplitude from a quiescent state (where no growth occurs) to a final state" @default.
- W249339976 created "2016-06-24" @default.
- W249339976 creator A5000421563 @default.
- W249339976 creator A5000693391 @default.
- W249339976 date "2010-06-29" @default.
- W249339976 modified "2023-09-26" @default.
- W249339976 title "The dimensional scaling of the probability density function tails in the Kardar-Parisi-Zhang equation" @default.
- W249339976 cites W587439984 @default.
- W249339976 hasPublicationYear "2010" @default.
- W249339976 type Work @default.
- W249339976 sameAs 249339976 @default.
- W249339976 citedByCount "0" @default.
- W249339976 crossrefType "posted-content" @default.
- W249339976 hasAuthorship W249339976A5000421563 @default.
- W249339976 hasAuthorship W249339976A5000693391 @default.
- W249339976 hasConcept C105795698 @default.
- W249339976 hasConcept C121332964 @default.
- W249339976 hasConcept C121864883 @default.
- W249339976 hasConcept C129747778 @default.
- W249339976 hasConcept C134306372 @default.
- W249339976 hasConcept C136264566 @default.
- W249339976 hasConcept C14036430 @default.
- W249339976 hasConcept C158622935 @default.
- W249339976 hasConcept C162324750 @default.
- W249339976 hasConcept C164380108 @default.
- W249339976 hasConcept C197055811 @default.
- W249339976 hasConcept C202444582 @default.
- W249339976 hasConcept C2524010 @default.
- W249339976 hasConcept C2777577648 @default.
- W249339976 hasConcept C2780378061 @default.
- W249339976 hasConcept C33676613 @default.
- W249339976 hasConcept C33923547 @default.
- W249339976 hasConcept C37914503 @default.
- W249339976 hasConcept C571446 @default.
- W249339976 hasConcept C62520636 @default.
- W249339976 hasConcept C74859849 @default.
- W249339976 hasConcept C78458016 @default.
- W249339976 hasConcept C86803240 @default.
- W249339976 hasConcept C99692599 @default.
- W249339976 hasConcept C99844830 @default.
- W249339976 hasConceptScore W249339976C105795698 @default.
- W249339976 hasConceptScore W249339976C121332964 @default.
- W249339976 hasConceptScore W249339976C121864883 @default.
- W249339976 hasConceptScore W249339976C129747778 @default.
- W249339976 hasConceptScore W249339976C134306372 @default.
- W249339976 hasConceptScore W249339976C136264566 @default.
- W249339976 hasConceptScore W249339976C14036430 @default.
- W249339976 hasConceptScore W249339976C158622935 @default.
- W249339976 hasConceptScore W249339976C162324750 @default.
- W249339976 hasConceptScore W249339976C164380108 @default.
- W249339976 hasConceptScore W249339976C197055811 @default.
- W249339976 hasConceptScore W249339976C202444582 @default.
- W249339976 hasConceptScore W249339976C2524010 @default.
- W249339976 hasConceptScore W249339976C2777577648 @default.
- W249339976 hasConceptScore W249339976C2780378061 @default.
- W249339976 hasConceptScore W249339976C33676613 @default.
- W249339976 hasConceptScore W249339976C33923547 @default.
- W249339976 hasConceptScore W249339976C37914503 @default.
- W249339976 hasConceptScore W249339976C571446 @default.
- W249339976 hasConceptScore W249339976C62520636 @default.
- W249339976 hasConceptScore W249339976C74859849 @default.
- W249339976 hasConceptScore W249339976C78458016 @default.
- W249339976 hasConceptScore W249339976C86803240 @default.
- W249339976 hasConceptScore W249339976C99692599 @default.
- W249339976 hasConceptScore W249339976C99844830 @default.
- W249339976 hasLocation W2493399761 @default.
- W249339976 hasOpenAccess W249339976 @default.
- W249339976 hasPrimaryLocation W2493399761 @default.
- W249339976 hasRelatedWork W1526257355 @default.
- W249339976 hasRelatedWork W1684333174 @default.
- W249339976 hasRelatedWork W1997828601 @default.
- W249339976 hasRelatedWork W2010592656 @default.
- W249339976 hasRelatedWork W2038131983 @default.
- W249339976 hasRelatedWork W2038712469 @default.
- W249339976 hasRelatedWork W2060089654 @default.
- W249339976 hasRelatedWork W2076991966 @default.
- W249339976 hasRelatedWork W2121600720 @default.
- W249339976 hasRelatedWork W2148572201 @default.
- W249339976 hasRelatedWork W2943488916 @default.
- W249339976 hasRelatedWork W2967161589 @default.
- W249339976 hasRelatedWork W3018694721 @default.
- W249339976 hasRelatedWork W3036488912 @default.
- W249339976 hasRelatedWork W3100123103 @default.
- W249339976 hasRelatedWork W3100500271 @default.
- W249339976 hasRelatedWork W3100754799 @default.
- W249339976 hasRelatedWork W3102369672 @default.
- W249339976 hasRelatedWork W3169089190 @default.
- W249339976 hasRelatedWork W807351821 @default.
- W249339976 isParatext "false" @default.
- W249339976 isRetracted "false" @default.
- W249339976 magId "249339976" @default.
- W249339976 workType "article" @default.