Matches in SemOpenAlex for { <https://semopenalex.org/work/W2493820507> ?p ?o ?g. }
Showing items 1 to 42 of
42
with 100 items per page.
- W2493820507 endingPage "86" @default.
- W2493820507 startingPage "67" @default.
- W2493820507 abstract "Introduction In this chapter we shall be concerned with the exterior gravitational and electromagnetic fields of rotating charged sources. The electromagnetic field has energy stored in it and hence contributes to the energy-momentum tensor in the region exterior to the sources. We will not be concerned in this chapter with equations satisfied by the sources but consider only some general properties of the sources as reflected in the exterior field. All the solutions we mention in this chapter are exterior solutions of the Einstein–Maxwell (EM) equations. These solutions are also known as ‘electrovac’ solutions. A great deal of work has been done on the EM equations. In this chapter we shall mainly be concerned with some general classes of solutions and the physical property of the rotating sources that these exterior solutions reflect. Papapetrou (1947) and Majumdar (1947) independently discovered electrostatic (non-rotating) solutions of the EM equations which are given in terms of a single harmonic function. These solutions have no spatial symmetry (i.e. they are non-axisymmetric), and are produced by sources with m =| e |, m and e being the mass and charge respectively in suitable units. We call these the PM solutions (these solutions are distinct from the Papapetrou solutions discussed in Section 2.5). Weyl's (1917) electrostatic (non-rotating) solutions of the EM equations (these are distinct from the Weyl solutions of Section 2.3 – in this chapter we shall always refer to the electrostatic solutions) have axial symmetry, but the sources satisfy m =β e where β is a constant, the same for all masses." @default.
- W2493820507 created "2016-08-23" @default.
- W2493820507 creator A5005746415 @default.
- W2493820507 date "1985-06-27" @default.
- W2493820507 modified "2023-09-27" @default.
- W2493820507 title "Rotating Einstein–Maxwell fields" @default.
- W2493820507 doi "https://doi.org/10.1017/cbo9780511735738.006" @default.
- W2493820507 hasPublicationYear "1985" @default.
- W2493820507 type Work @default.
- W2493820507 sameAs 2493820507 @default.
- W2493820507 citedByCount "0" @default.
- W2493820507 crossrefType "book-chapter" @default.
- W2493820507 hasAuthorship W2493820507A5005746415 @default.
- W2493820507 hasConcept C121332964 @default.
- W2493820507 hasConcept C146846114 @default.
- W2493820507 hasConcept C33332235 @default.
- W2493820507 hasConcept C37914503 @default.
- W2493820507 hasConcept C74650414 @default.
- W2493820507 hasConceptScore W2493820507C121332964 @default.
- W2493820507 hasConceptScore W2493820507C146846114 @default.
- W2493820507 hasConceptScore W2493820507C33332235 @default.
- W2493820507 hasConceptScore W2493820507C37914503 @default.
- W2493820507 hasConceptScore W2493820507C74650414 @default.
- W2493820507 hasLocation W24938205071 @default.
- W2493820507 hasOpenAccess W2493820507 @default.
- W2493820507 hasPrimaryLocation W24938205071 @default.
- W2493820507 hasRelatedWork W1627688497 @default.
- W2493820507 hasRelatedWork W2014482394 @default.
- W2493820507 hasRelatedWork W2026832990 @default.
- W2493820507 hasRelatedWork W2032197524 @default.
- W2493820507 hasRelatedWork W2047721056 @default.
- W2493820507 hasRelatedWork W2071547621 @default.
- W2493820507 hasRelatedWork W2073448054 @default.
- W2493820507 hasRelatedWork W3098613295 @default.
- W2493820507 hasRelatedWork W3130965325 @default.
- W2493820507 hasRelatedWork W4200152537 @default.
- W2493820507 isParatext "false" @default.
- W2493820507 isRetracted "false" @default.
- W2493820507 magId "2493820507" @default.
- W2493820507 workType "book-chapter" @default.