Matches in SemOpenAlex for { <https://semopenalex.org/work/W2493869572> ?p ?o ?g. }
- W2493869572 endingPage "4752" @default.
- W2493869572 startingPage "4742" @default.
- W2493869572 abstract "In radiotherapy based only on magnetic resonance imaging (MRI), knowledge about tissue electron densities must be derived from the MRI. This can be achieved by converting the MRI scan to the so-called pseudo-computed tomography (pCT). An obstacle is that the voxel intensities in conventional MRI scans are not uniquely related to electron density. The authors previously demonstrated that a patch-based method could produce accurate pCTs of the brain using conventional T1-weighted MRI scans. The method was driven mainly by local patch similarities and relied on simple affine registrations between an atlas database of the co-registered MRI/CT scan pairs and the MRI scan to be converted. In this study, the authors investigate the applicability of the patch-based approach in the pelvis. This region is challenging for a method based on local similarities due to the greater inter-patient variation. The authors benchmark the method against a baseline pCT strategy where all voxels inside the body contour are assigned a water-equivalent bulk density. Furthermore, the authors implement a parallelized approximate patch search strategy to speed up the pCT generation time to a more clinically relevant level.The data consisted of CT and T1-weighted MRI scans of 10 prostate patients. pCTs were generated using an approximate patch search algorithm in a leave-one-out fashion and compared with the CT using frequently described metrics such as the voxel-wise mean absolute error (MAEvox) and the deviation in water-equivalent path lengths. Furthermore, the dosimetric accuracy was tested for a volumetric modulated arc therapy plan using dose-volume histogram (DVH) point deviations and γ-index analysis.The patch-based approach had an average MAEvox of 54 HU; median deviations of less than 0.4% in relevant DVH points and a γ-index pass rate of 0.97 using a 1%/1 mm criterion. The patch-based approach showed a significantly better performance than the baseline water pCT in almost all metrics. The approximate patch search strategy was 70x faster than a brute-force search, with an average prediction time of 20.8 min.The authors showed that a patch-based method based on affine registrations and T1-weighted MRI could generate accurate pCTs of the pelvis. The main source of differences between pCT and CT was positional changes of air pockets and body outline." @default.
- W2493869572 created "2016-08-23" @default.
- W2493869572 creator A5014903081 @default.
- W2493869572 creator A5047520245 @default.
- W2493869572 creator A5065387811 @default.
- W2493869572 date "2016-07-25" @default.
- W2493869572 modified "2023-10-12" @default.
- W2493869572 title "A patch-based pseudo-CT approach for MRI-only radiotherapy in the pelvis" @default.
- W2493869572 cites W134193804 @default.
- W2493869572 cites W1822713087 @default.
- W2493869572 cites W1845428797 @default.
- W2493869572 cites W196093984 @default.
- W2493869572 cites W1963072903 @default.
- W2493869572 cites W1966702554 @default.
- W2493869572 cites W1967121735 @default.
- W2493869572 cites W1968795335 @default.
- W2493869572 cites W1969750491 @default.
- W2493869572 cites W1982095138 @default.
- W2493869572 cites W1984473052 @default.
- W2493869572 cites W1985180563 @default.
- W2493869572 cites W1993120651 @default.
- W2493869572 cites W2003059727 @default.
- W2493869572 cites W2003933915 @default.
- W2493869572 cites W2007234908 @default.
- W2493869572 cites W2013995453 @default.
- W2493869572 cites W2020195866 @default.
- W2493869572 cites W2021177063 @default.
- W2493869572 cites W2025172079 @default.
- W2493869572 cites W2032377318 @default.
- W2493869572 cites W2035397698 @default.
- W2493869572 cites W2054245031 @default.
- W2493869572 cites W2080858163 @default.
- W2493869572 cites W2086284908 @default.
- W2493869572 cites W2087726204 @default.
- W2493869572 cites W2090699663 @default.
- W2493869572 cites W2094835291 @default.
- W2493869572 cites W2096305085 @default.
- W2493869572 cites W2100495482 @default.
- W2493869572 cites W2114740909 @default.
- W2493869572 cites W2117340355 @default.
- W2493869572 cites W2128124359 @default.
- W2493869572 cites W2133059825 @default.
- W2493869572 cites W2133287637 @default.
- W2493869572 cites W2142082007 @default.
- W2493869572 cites W2147543470 @default.
- W2493869572 cites W2154158661 @default.
- W2493869572 cites W2157025461 @default.
- W2493869572 cites W2162246940 @default.
- W2493869572 cites W2311671475 @default.
- W2493869572 cites W2346304842 @default.
- W2493869572 cites W4232075621 @default.
- W2493869572 doi "https://doi.org/10.1118/1.4958676" @default.
- W2493869572 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27487892" @default.
- W2493869572 hasPublicationYear "2016" @default.
- W2493869572 type Work @default.
- W2493869572 sameAs 2493869572 @default.
- W2493869572 citedByCount "62" @default.
- W2493869572 countsByYear W24938695722017 @default.
- W2493869572 countsByYear W24938695722018 @default.
- W2493869572 countsByYear W24938695722019 @default.
- W2493869572 countsByYear W24938695722020 @default.
- W2493869572 countsByYear W24938695722021 @default.
- W2493869572 countsByYear W24938695722022 @default.
- W2493869572 countsByYear W24938695722023 @default.
- W2493869572 crossrefType "journal-article" @default.
- W2493869572 hasAuthorship W2493869572A5014903081 @default.
- W2493869572 hasAuthorship W2493869572A5047520245 @default.
- W2493869572 hasAuthorship W2493869572A5065387811 @default.
- W2493869572 hasConcept C126838900 @default.
- W2493869572 hasConcept C143409427 @default.
- W2493869572 hasConcept C154945302 @default.
- W2493869572 hasConcept C2778357063 @default.
- W2493869572 hasConcept C2989005 @default.
- W2493869572 hasConcept C41008148 @default.
- W2493869572 hasConcept C54170458 @default.
- W2493869572 hasConcept C544519230 @default.
- W2493869572 hasConcept C71924100 @default.
- W2493869572 hasConceptScore W2493869572C126838900 @default.
- W2493869572 hasConceptScore W2493869572C143409427 @default.
- W2493869572 hasConceptScore W2493869572C154945302 @default.
- W2493869572 hasConceptScore W2493869572C2778357063 @default.
- W2493869572 hasConceptScore W2493869572C2989005 @default.
- W2493869572 hasConceptScore W2493869572C41008148 @default.
- W2493869572 hasConceptScore W2493869572C54170458 @default.
- W2493869572 hasConceptScore W2493869572C544519230 @default.
- W2493869572 hasConceptScore W2493869572C71924100 @default.
- W2493869572 hasIssue "8Part1" @default.
- W2493869572 hasLocation W24938695721 @default.
- W2493869572 hasLocation W24938695722 @default.
- W2493869572 hasOpenAccess W2493869572 @default.
- W2493869572 hasPrimaryLocation W24938695721 @default.
- W2493869572 hasRelatedWork W1977533142 @default.
- W2493869572 hasRelatedWork W2006338788 @default.
- W2493869572 hasRelatedWork W2006341426 @default.
- W2493869572 hasRelatedWork W2070002274 @default.
- W2493869572 hasRelatedWork W2083053675 @default.
- W2493869572 hasRelatedWork W2087093711 @default.
- W2493869572 hasRelatedWork W2089784239 @default.