Matches in SemOpenAlex for { <https://semopenalex.org/work/W2493999654> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2493999654 endingPage "150" @default.
- W2493999654 startingPage "139" @default.
- W2493999654 abstract "In order to identify new molecules susceptible to become medicines, the pharmaceutical research has more and more resort to new technologies to synthesize big number of molecules simultaneously and to test their actions on given therapeutic target. This data can be exploited to construct the models permitting to predict the properties of molecules not yet tested, even not yet synthesized. Such predictive models are very important because they make it possible to suggest the synthesis of new molecules, and to eliminate very early in the the molecule’s search process the molecules whose properties would prevent their use as medicine. The authors call it virtual sifting. It is within this framework that research by similarity is registered. It is a practical approach to identify molecules candidates (to become medicines) from the data bases or the virtual chemical libraries by comparing the compounds two by two. Many statistical models and learning tools have been developed to correlate the molecule’s structure with their chemical, physical or biological properties. The large majority of these methods start by transforming each molecule in a vector of great dimension (using molecular descriptors), then use a learning algorithm on these vectorial descriptions. The objective of this chapter is to study molecular similarity using a particular type of neural networks: the Kohonen networks (also called “SOM” Self- Organizing Maps), applying the nearest neighbor algorithm to the projection of the molecules (coordinates) in the constructed MAP." @default.
- W2493999654 created "2016-08-23" @default.
- W2493999654 creator A5014746202 @default.
- W2493999654 creator A5036568214 @default.
- W2493999654 creator A5043072978 @default.
- W2493999654 creator A5088665937 @default.
- W2493999654 date "2011-10-04" @default.
- W2493999654 modified "2023-09-26" @default.
- W2493999654 title "Molecular Similarity" @default.
- W2493999654 cites W1545231783 @default.
- W2493999654 cites W1983610905 @default.
- W2493999654 cites W2000376564 @default.
- W2493999654 cites W2026910177 @default.
- W2493999654 cites W2096729078 @default.
- W2493999654 cites W2125253492 @default.
- W2493999654 cites W65738273 @default.
- W2493999654 doi "https://doi.org/10.4018/978-1-60960-860-6.ch005" @default.
- W2493999654 hasPublicationYear "2011" @default.
- W2493999654 type Work @default.
- W2493999654 sameAs 2493999654 @default.
- W2493999654 citedByCount "0" @default.
- W2493999654 crossrefType "book-chapter" @default.
- W2493999654 hasAuthorship W2493999654A5014746202 @default.
- W2493999654 hasAuthorship W2493999654A5036568214 @default.
- W2493999654 hasAuthorship W2493999654A5043072978 @default.
- W2493999654 hasAuthorship W2493999654A5088665937 @default.
- W2493999654 hasConcept C103278499 @default.
- W2493999654 hasConcept C115961682 @default.
- W2493999654 hasConcept C124101348 @default.
- W2493999654 hasConcept C153180895 @default.
- W2493999654 hasConcept C154945302 @default.
- W2493999654 hasConcept C41008148 @default.
- W2493999654 hasConcept C50644808 @default.
- W2493999654 hasConceptScore W2493999654C103278499 @default.
- W2493999654 hasConceptScore W2493999654C115961682 @default.
- W2493999654 hasConceptScore W2493999654C124101348 @default.
- W2493999654 hasConceptScore W2493999654C153180895 @default.
- W2493999654 hasConceptScore W2493999654C154945302 @default.
- W2493999654 hasConceptScore W2493999654C41008148 @default.
- W2493999654 hasConceptScore W2493999654C50644808 @default.
- W2493999654 hasLocation W24939996541 @default.
- W2493999654 hasOpenAccess W2493999654 @default.
- W2493999654 hasPrimaryLocation W24939996541 @default.
- W2493999654 hasRelatedWork W1593974156 @default.
- W2493999654 hasRelatedWork W1678662063 @default.
- W2493999654 hasRelatedWork W1965534409 @default.
- W2493999654 hasRelatedWork W1970383942 @default.
- W2493999654 hasRelatedWork W1979699611 @default.
- W2493999654 hasRelatedWork W1983846259 @default.
- W2493999654 hasRelatedWork W1989829359 @default.
- W2493999654 hasRelatedWork W2015745559 @default.
- W2493999654 hasRelatedWork W2080545520 @default.
- W2493999654 hasRelatedWork W2094435148 @default.
- W2493999654 hasRelatedWork W2130794164 @default.
- W2493999654 hasRelatedWork W2146840988 @default.
- W2493999654 hasRelatedWork W2351156439 @default.
- W2493999654 hasRelatedWork W2378937607 @default.
- W2493999654 hasRelatedWork W2384760787 @default.
- W2493999654 hasRelatedWork W2980347326 @default.
- W2493999654 hasRelatedWork W2993206009 @default.
- W2493999654 hasRelatedWork W98313726 @default.
- W2493999654 hasRelatedWork W2100138393 @default.
- W2493999654 hasRelatedWork W2760262730 @default.
- W2493999654 isParatext "false" @default.
- W2493999654 isRetracted "false" @default.
- W2493999654 magId "2493999654" @default.
- W2493999654 workType "book-chapter" @default.