Matches in SemOpenAlex for { <https://semopenalex.org/work/W2494296723> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2494296723 endingPage "74" @default.
- W2494296723 startingPage "65" @default.
- W2494296723 abstract "In some statistical non-parametric models the mean of the random variable y has to satisfy specific constraints. We consider the case where the set defined by the constraints is a closed polyhedral cone K in Rk. For example, when the mean is required to be concave in x, the set of acceptable means is a closed convex cone defined by k-2 linear inequalities in Rk. The least squares estimate of the mean is then the projection of the data point y on the cone K. In this paper, we present an algorithm to find the least square estimate of the mean in a finite number of steps. Other algorithms to solve this problem have been given before. The successive approximations in such algorithms are usually points on the faces of K. The solution here is reached by following a fixed line joining an abitrary but suitably chosen initial point y0 to the data point y. The 1- dimensional subspace spanned by the generators of the cone K is divided into 2' regions which can be described as the set of points with non-negative coordinates in mixed primal-dual bases relative to the cone K. Any point y belongs to one and only one of these regions SJ with corresponding basis 3j. The projection of y on K is immediately obtained from the expression of y in Oj by dropping the dual component of y." @default.
- W2494296723 created "2016-08-23" @default.
- W2494296723 creator A5046896602 @default.
- W2494296723 creator A5079285712 @default.
- W2494296723 date "2016-01-01" @default.
- W2494296723 modified "2023-10-10" @default.
- W2494296723 title "A Mixed Prinmal-Dual Bases Algorithm for Regression under Inequality Constraints. Application to Concave regression" @default.
- W2494296723 cites W1966043983 @default.
- W2494296723 cites W2034562813 @default.
- W2494296723 cites W2050958540 @default.
- W2494296723 cites W2079313454 @default.
- W2494296723 cites W2102041666 @default.
- W2494296723 cites W2335748804 @default.
- W2494296723 cites W3124543013 @default.
- W2494296723 cites W593475726 @default.
- W2494296723 hasPublicationYear "2016" @default.
- W2494296723 type Work @default.
- W2494296723 sameAs 2494296723 @default.
- W2494296723 citedByCount "29" @default.
- W2494296723 countsByYear W24942967232012 @default.
- W2494296723 countsByYear W24942967232013 @default.
- W2494296723 countsByYear W24942967232014 @default.
- W2494296723 countsByYear W24942967232015 @default.
- W2494296723 countsByYear W24942967232016 @default.
- W2494296723 countsByYear W24942967232017 @default.
- W2494296723 countsByYear W24942967232018 @default.
- W2494296723 crossrefType "journal-article" @default.
- W2494296723 hasAuthorship W2494296723A5046896602 @default.
- W2494296723 hasAuthorship W2494296723A5079285712 @default.
- W2494296723 hasConcept C112680207 @default.
- W2494296723 hasConcept C11413529 @default.
- W2494296723 hasConcept C114614502 @default.
- W2494296723 hasConcept C134306372 @default.
- W2494296723 hasConcept C157972887 @default.
- W2494296723 hasConcept C206194317 @default.
- W2494296723 hasConcept C2524010 @default.
- W2494296723 hasConcept C28340159 @default.
- W2494296723 hasConcept C30014739 @default.
- W2494296723 hasConcept C32834561 @default.
- W2494296723 hasConcept C33923547 @default.
- W2494296723 hasConcept C49870271 @default.
- W2494296723 hasConcept C57493831 @default.
- W2494296723 hasConceptScore W2494296723C112680207 @default.
- W2494296723 hasConceptScore W2494296723C11413529 @default.
- W2494296723 hasConceptScore W2494296723C114614502 @default.
- W2494296723 hasConceptScore W2494296723C134306372 @default.
- W2494296723 hasConceptScore W2494296723C157972887 @default.
- W2494296723 hasConceptScore W2494296723C206194317 @default.
- W2494296723 hasConceptScore W2494296723C2524010 @default.
- W2494296723 hasConceptScore W2494296723C28340159 @default.
- W2494296723 hasConceptScore W2494296723C30014739 @default.
- W2494296723 hasConceptScore W2494296723C32834561 @default.
- W2494296723 hasConceptScore W2494296723C33923547 @default.
- W2494296723 hasConceptScore W2494296723C49870271 @default.
- W2494296723 hasConceptScore W2494296723C57493831 @default.
- W2494296723 hasIssue "1" @default.
- W2494296723 hasLocation W24942967231 @default.
- W2494296723 hasOpenAccess W2494296723 @default.
- W2494296723 hasPrimaryLocation W24942967231 @default.
- W2494296723 hasRelatedWork W1588591676 @default.
- W2494296723 hasRelatedWork W1975116882 @default.
- W2494296723 hasRelatedWork W1979663407 @default.
- W2494296723 hasRelatedWork W1989770444 @default.
- W2494296723 hasRelatedWork W1996733942 @default.
- W2494296723 hasRelatedWork W2004394537 @default.
- W2494296723 hasRelatedWork W2006632355 @default.
- W2494296723 hasRelatedWork W2006650766 @default.
- W2494296723 hasRelatedWork W2023912140 @default.
- W2494296723 hasRelatedWork W2038290750 @default.
- W2494296723 hasRelatedWork W2050958540 @default.
- W2494296723 hasRelatedWork W2079313454 @default.
- W2494296723 hasRelatedWork W2101626984 @default.
- W2494296723 hasRelatedWork W2104133276 @default.
- W2494296723 hasRelatedWork W2122818263 @default.
- W2494296723 hasRelatedWork W2127441697 @default.
- W2494296723 hasRelatedWork W2151447307 @default.
- W2494296723 hasRelatedWork W2167834874 @default.
- W2494296723 hasRelatedWork W2795929191 @default.
- W2494296723 hasRelatedWork W3103695676 @default.
- W2494296723 hasVolume "16" @default.
- W2494296723 isParatext "false" @default.
- W2494296723 isRetracted "false" @default.
- W2494296723 magId "2494296723" @default.
- W2494296723 workType "article" @default.