Matches in SemOpenAlex for { <https://semopenalex.org/work/W2494908280> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W2494908280 endingPage "196" @default.
- W2494908280 startingPage "193" @default.
- W2494908280 abstract "Maximum electric fields typically measured in thunderclouds (see Table 3.2 of Rakov and Uman (2003) and references therein) are 1–2 × 10 5 V/m (the highest measured value is 4 × 10 5 V/m), which is lower than the expected conventional breakdown field, of the order of 10 6 V/m. Two mechanisms of lightning initiation have been suggested. One relies on the emission of positive streamers from hydrometeors when the electric field exceeds 2.5–9.5 × 10 5 V/m, and the other involves high-energy cosmic ray particles and the runaway breakdown that occurs in a critical field, calculated to be about 10 5 V/m at an altitude of 6 km. Either of these two mechanisms permits, in principle, creation of an ionized region (“lightning seed”) in the cloud that is capable of locally enhancing the electric field at its extremities. Such field enhancement is likely to be the main process leading to the formation (via conventional breakdown) of a hot, self-propagating lightning channel. Conventional breakdown According to the conventional breakdown mechanism, lightning is initiated via the emission of positive corona from the surface of precipitation particles, highly deformed by strong electric fields in the case of raindrops, coupled with some mechanism whereby the electric field is locally enhanced to support the propagation of corona streamers. Positive streamers are much more likely to initiate lightning than negative ones because they can propagate in substantially lower fields. The most detailed hypothetical scenario of lightning initiation via conventional breakdown is described by Griffiths and Phelps (1976b), who consider a system of positive streamers developing from a point on a hydrometeor where the electric field exceeds the corona onset value of 2.5–9.5 × 10 5 V/m (2.5–9.5 kV/cm). The developing streamers are assumed to form a conical volume that grows longitudinally. The ambient electric field in the thundercloud required to support the propagation of corona streamers, E 0 , was found by Griffiths and Phelps (1976a) from laboratory experiments to be 1.5 × 10 5 V/m (1.5 kV/cm) at about 6.5 km and 2.5 × 10 5 V/m (2.5 kV/cm) at about 3.5 km. If the ambient electric field is higher than E 0 , the streamer system will intensify, carrying an increasing amount of positive charge on the propagating base of the cone, which simulates the positive streamer tips, and depositing an equally increasing amount of negative charge in the conical volume which represents the trails of the positive streamers." @default.
- W2494908280 created "2016-08-23" @default.
- W2494908280 creator A5055874419 @default.
- W2494908280 date "2016-04-05" @default.
- W2494908280 modified "2023-09-28" @default.
- W2494908280 title "How is lightning initiated in thunderclouds?" @default.
- W2494908280 doi "https://doi.org/10.1017/cbo9781139680370.011" @default.
- W2494908280 hasPublicationYear "2016" @default.
- W2494908280 type Work @default.
- W2494908280 sameAs 2494908280 @default.
- W2494908280 citedByCount "0" @default.
- W2494908280 crossrefType "book-chapter" @default.
- W2494908280 hasAuthorship W2494908280A5055874419 @default.
- W2494908280 hasConcept C121332964 @default.
- W2494908280 hasConcept C153294291 @default.
- W2494908280 hasConcept C163258240 @default.
- W2494908280 hasConcept C2776779350 @default.
- W2494908280 hasConcept C2779900269 @default.
- W2494908280 hasConcept C30475298 @default.
- W2494908280 hasConcept C47279414 @default.
- W2494908280 hasConcept C57879066 @default.
- W2494908280 hasConcept C60799052 @default.
- W2494908280 hasConcept C62520636 @default.
- W2494908280 hasConcept C69398868 @default.
- W2494908280 hasConcept C80316258 @default.
- W2494908280 hasConcept C87355193 @default.
- W2494908280 hasConceptScore W2494908280C121332964 @default.
- W2494908280 hasConceptScore W2494908280C153294291 @default.
- W2494908280 hasConceptScore W2494908280C163258240 @default.
- W2494908280 hasConceptScore W2494908280C2776779350 @default.
- W2494908280 hasConceptScore W2494908280C2779900269 @default.
- W2494908280 hasConceptScore W2494908280C30475298 @default.
- W2494908280 hasConceptScore W2494908280C47279414 @default.
- W2494908280 hasConceptScore W2494908280C57879066 @default.
- W2494908280 hasConceptScore W2494908280C60799052 @default.
- W2494908280 hasConceptScore W2494908280C62520636 @default.
- W2494908280 hasConceptScore W2494908280C69398868 @default.
- W2494908280 hasConceptScore W2494908280C80316258 @default.
- W2494908280 hasConceptScore W2494908280C87355193 @default.
- W2494908280 hasLocation W24949082801 @default.
- W2494908280 hasOpenAccess W2494908280 @default.
- W2494908280 hasPrimaryLocation W24949082801 @default.
- W2494908280 hasRelatedWork W1559358104 @default.
- W2494908280 hasRelatedWork W1911543680 @default.
- W2494908280 hasRelatedWork W1931080096 @default.
- W2494908280 hasRelatedWork W1977245987 @default.
- W2494908280 hasRelatedWork W1980611804 @default.
- W2494908280 hasRelatedWork W1986240912 @default.
- W2494908280 hasRelatedWork W2000943294 @default.
- W2494908280 hasRelatedWork W2021703695 @default.
- W2494908280 hasRelatedWork W2024312793 @default.
- W2494908280 hasRelatedWork W2105471731 @default.
- W2494908280 hasRelatedWork W2136184220 @default.
- W2494908280 hasRelatedWork W2138220114 @default.
- W2494908280 hasRelatedWork W2158308248 @default.
- W2494908280 hasRelatedWork W2162005783 @default.
- W2494908280 hasRelatedWork W2394918073 @default.
- W2494908280 hasRelatedWork W2562524221 @default.
- W2494908280 hasRelatedWork W2707250928 @default.
- W2494908280 hasRelatedWork W2803240731 @default.
- W2494908280 hasRelatedWork W3154265559 @default.
- W2494908280 hasRelatedWork W3197882791 @default.
- W2494908280 isParatext "false" @default.
- W2494908280 isRetracted "false" @default.
- W2494908280 magId "2494908280" @default.
- W2494908280 workType "book-chapter" @default.