Matches in SemOpenAlex for { <https://semopenalex.org/work/W2494920139> ?p ?o ?g. }
- W2494920139 endingPage "36" @default.
- W2494920139 startingPage "23" @default.
- W2494920139 abstract "Land-use optimization problem (LUOP) that seeks to allocate different land types to land units involves various dimensions and deals with numerous conflicting objectives and a large set of data and variables. Single meta-heuristics are broadly developed and applied for solving LUOP. Despite the acceptable solutions derived from these algorithms, researchers in both academic and practical areas face the interesting question: can we develop an algorithm with better efficiency and solution quality? In the literature of operation research, hybridization, a combination of meta-heuristics, was introduced as a way of generating better algorithms. Therefore, this paper aims at developing novel algorithms through hybridizing Tabu search (TS), genetic algorithm (GA), GRASP, and simulated annealing (SA) and examining their quality and efficiency in practice. Accordingly, low-level teamwork GRASP–GA–TS (LLTGRGATS), high-level relay Greedy–GA–TS, and high-level teamwork SA were developed. Firstly, these algorithms were applied for solving small- and large-size single-row facility layout problem to evaluate their performance and functionality and to select the satisfactory algorithm in comparison with the other developed hybrids. Secondly, the selected algorithm, LLTGRGATS, and SVNS, a recent hybrid algorithm proposed for solving LUOP, were performed on a study area to solve a LUOP with two constraints and seven nonlinear objective functions. The outputs showed that the quality and efficiency of LLTGRGATS were slightly better than those of SVNS and it can be considered as a favorable tool for land-use planning process." @default.
- W2494920139 created "2016-08-23" @default.
- W2494920139 creator A5031705014 @default.
- W2494920139 creator A5056105420 @default.
- W2494920139 creator A5064087695 @default.
- W2494920139 date "2016-11-01" @default.
- W2494920139 modified "2023-10-14" @default.
- W2494920139 title "Development, application, and comparison of hybrid meta-heuristics for urban land-use allocation optimization: Tabu search, genetic, GRASP, and simulated annealing algorithms" @default.
- W2494920139 cites W1974464033 @default.
- W2494920139 cites W1976443827 @default.
- W2494920139 cites W1978598078 @default.
- W2494920139 cites W1979564670 @default.
- W2494920139 cites W1982846944 @default.
- W2494920139 cites W1983673499 @default.
- W2494920139 cites W1989938457 @default.
- W2494920139 cites W1991877777 @default.
- W2494920139 cites W1992310105 @default.
- W2494920139 cites W2004677248 @default.
- W2494920139 cites W2010192022 @default.
- W2494920139 cites W2018139780 @default.
- W2494920139 cites W2021701427 @default.
- W2494920139 cites W2029792121 @default.
- W2494920139 cites W2030336512 @default.
- W2494920139 cites W2041068007 @default.
- W2494920139 cites W2041109518 @default.
- W2494920139 cites W2045288158 @default.
- W2494920139 cites W2057140134 @default.
- W2494920139 cites W2063394514 @default.
- W2494920139 cites W2063713454 @default.
- W2494920139 cites W2064491739 @default.
- W2494920139 cites W2065487957 @default.
- W2494920139 cites W2067331053 @default.
- W2494920139 cites W2070200001 @default.
- W2494920139 cites W2080039139 @default.
- W2494920139 cites W2083537405 @default.
- W2494920139 cites W2084792706 @default.
- W2494920139 cites W2101257241 @default.
- W2494920139 cites W2103870180 @default.
- W2494920139 cites W2106599325 @default.
- W2494920139 cites W2112586494 @default.
- W2494920139 cites W2113014369 @default.
- W2494920139 cites W2116115717 @default.
- W2494920139 cites W2116417672 @default.
- W2494920139 cites W2127967045 @default.
- W2494920139 cites W2131742526 @default.
- W2494920139 cites W2148858459 @default.
- W2494920139 cites W2150085518 @default.
- W2494920139 cites W2150834164 @default.
- W2494920139 cites W2166250131 @default.
- W2494920139 cites W2203597711 @default.
- W2494920139 doi "https://doi.org/10.1016/j.compenvurbsys.2016.07.009" @default.
- W2494920139 hasPublicationYear "2016" @default.
- W2494920139 type Work @default.
- W2494920139 sameAs 2494920139 @default.
- W2494920139 citedByCount "38" @default.
- W2494920139 countsByYear W24949201392017 @default.
- W2494920139 countsByYear W24949201392018 @default.
- W2494920139 countsByYear W24949201392019 @default.
- W2494920139 countsByYear W24949201392020 @default.
- W2494920139 countsByYear W24949201392021 @default.
- W2494920139 countsByYear W24949201392022 @default.
- W2494920139 countsByYear W24949201392023 @default.
- W2494920139 crossrefType "journal-article" @default.
- W2494920139 hasAuthorship W2494920139A5031705014 @default.
- W2494920139 hasAuthorship W2494920139A5056105420 @default.
- W2494920139 hasAuthorship W2494920139A5064087695 @default.
- W2494920139 hasConcept C109718341 @default.
- W2494920139 hasConcept C11413529 @default.
- W2494920139 hasConcept C119857082 @default.
- W2494920139 hasConcept C123370116 @default.
- W2494920139 hasConcept C126255220 @default.
- W2494920139 hasConcept C126980161 @default.
- W2494920139 hasConcept C127705205 @default.
- W2494920139 hasConcept C137105694 @default.
- W2494920139 hasConcept C154945302 @default.
- W2494920139 hasConcept C171268870 @default.
- W2494920139 hasConcept C199360897 @default.
- W2494920139 hasConcept C199622910 @default.
- W2494920139 hasConcept C33923547 @default.
- W2494920139 hasConcept C41008148 @default.
- W2494920139 hasConcept C49937458 @default.
- W2494920139 hasConcept C62469222 @default.
- W2494920139 hasConcept C8880873 @default.
- W2494920139 hasConceptScore W2494920139C109718341 @default.
- W2494920139 hasConceptScore W2494920139C11413529 @default.
- W2494920139 hasConceptScore W2494920139C119857082 @default.
- W2494920139 hasConceptScore W2494920139C123370116 @default.
- W2494920139 hasConceptScore W2494920139C126255220 @default.
- W2494920139 hasConceptScore W2494920139C126980161 @default.
- W2494920139 hasConceptScore W2494920139C127705205 @default.
- W2494920139 hasConceptScore W2494920139C137105694 @default.
- W2494920139 hasConceptScore W2494920139C154945302 @default.
- W2494920139 hasConceptScore W2494920139C171268870 @default.
- W2494920139 hasConceptScore W2494920139C199360897 @default.
- W2494920139 hasConceptScore W2494920139C199622910 @default.
- W2494920139 hasConceptScore W2494920139C33923547 @default.
- W2494920139 hasConceptScore W2494920139C41008148 @default.
- W2494920139 hasConceptScore W2494920139C49937458 @default.