Matches in SemOpenAlex for { <https://semopenalex.org/work/W2495261722> ?p ?o ?g. }
- W2495261722 endingPage "559" @default.
- W2495261722 startingPage "549" @default.
- W2495261722 abstract "This chapter discusses about nonsmooth analysis, optimization theory, and Banach space theory. A Banach space X is called a weak Asplund space [Gâteaux differentiability space] if each continuous convex function defined on it is Gâteaux differentiable at the points of a residual subset (that is, a subset that contains the intersection of countably many dense open subsets of X ) [dense subset] of its domain. For a Banach space ( X , ∥ · ∥ ), with closed unit ball B X , the Bishop–Phelps set is the set of all linear functionals in the dual X * that attain their maximum value over B X ; that is, the set { x * ∈ X * : x * ( x ) = ∥ x * ∥ for some x ∈ B X }. The Bishop–Phelps Theorem says that the Bishop–Phelps set is always dense in X * . A Banach space X has the attainable approximation property ( AAP ) if the set of support functionals for any closed bounded convex subset W ⊆ X is norm dense in X * . The concepts related to the Bishop–Phelps problem and the complex Bishop–Phelps property are also discussed. Concepts of biorthogonal sequences and support points are also elaborated." @default.
- W2495261722 created "2016-08-23" @default.
- W2495261722 creator A5044507393 @default.
- W2495261722 creator A5088720034 @default.
- W2495261722 date "2007-01-01" @default.
- W2495261722 modified "2023-09-25" @default.
- W2495261722 title "Non-smooth analysis, optimisation theory and Banach space theory" @default.
- W2495261722 cites W1488589439 @default.
- W2495261722 cites W1490101649 @default.
- W2495261722 cites W1492700492 @default.
- W2495261722 cites W1497941563 @default.
- W2495261722 cites W1501218127 @default.
- W2495261722 cites W1569878307 @default.
- W2495261722 cites W1592105466 @default.
- W2495261722 cites W159924534 @default.
- W2495261722 cites W1605392200 @default.
- W2495261722 cites W17312128 @default.
- W2495261722 cites W182881619 @default.
- W2495261722 cites W1965205796 @default.
- W2495261722 cites W1966813362 @default.
- W2495261722 cites W1975397612 @default.
- W2495261722 cites W1985273793 @default.
- W2495261722 cites W1986448580 @default.
- W2495261722 cites W1986826866 @default.
- W2495261722 cites W1988315481 @default.
- W2495261722 cites W1991014694 @default.
- W2495261722 cites W1992937645 @default.
- W2495261722 cites W1993975818 @default.
- W2495261722 cites W1994891136 @default.
- W2495261722 cites W1996587738 @default.
- W2495261722 cites W1998341651 @default.
- W2495261722 cites W2003208015 @default.
- W2495261722 cites W2008839964 @default.
- W2495261722 cites W2009256553 @default.
- W2495261722 cites W2014703136 @default.
- W2495261722 cites W2015924925 @default.
- W2495261722 cites W2021532759 @default.
- W2495261722 cites W2021630616 @default.
- W2495261722 cites W2022110014 @default.
- W2495261722 cites W2023731826 @default.
- W2495261722 cites W2031304728 @default.
- W2495261722 cites W2033928407 @default.
- W2495261722 cites W2035746305 @default.
- W2495261722 cites W2039031367 @default.
- W2495261722 cites W2040635258 @default.
- W2495261722 cites W2045396253 @default.
- W2495261722 cites W2048383234 @default.
- W2495261722 cites W2048422170 @default.
- W2495261722 cites W2051984732 @default.
- W2495261722 cites W2052563939 @default.
- W2495261722 cites W2053316085 @default.
- W2495261722 cites W2054142127 @default.
- W2495261722 cites W2054281510 @default.
- W2495261722 cites W2055079853 @default.
- W2495261722 cites W2056487287 @default.
- W2495261722 cites W2058333605 @default.
- W2495261722 cites W2060629001 @default.
- W2495261722 cites W2065832306 @default.
- W2495261722 cites W2071031811 @default.
- W2495261722 cites W2071735819 @default.
- W2495261722 cites W2082463345 @default.
- W2495261722 cites W2084213989 @default.
- W2495261722 cites W2085246298 @default.
- W2495261722 cites W2088160582 @default.
- W2495261722 cites W2093142153 @default.
- W2495261722 cites W2094534463 @default.
- W2495261722 cites W2117344174 @default.
- W2495261722 cites W2119633269 @default.
- W2495261722 cites W2138993682 @default.
- W2495261722 cites W2139300653 @default.
- W2495261722 cites W2144058083 @default.
- W2495261722 cites W2150672335 @default.
- W2495261722 cites W2162428198 @default.
- W2495261722 cites W2163159034 @default.
- W2495261722 cites W2291737467 @default.
- W2495261722 cites W2316558297 @default.
- W2495261722 cites W2326685525 @default.
- W2495261722 cites W2476035984 @default.
- W2495261722 cites W2504578745 @default.
- W2495261722 cites W256481843 @default.
- W2495261722 cites W290677782 @default.
- W2495261722 cites W3008864336 @default.
- W2495261722 cites W3027239889 @default.
- W2495261722 cites W3043200404 @default.
- W2495261722 cites W765138080 @default.
- W2495261722 cites W979878732 @default.
- W2495261722 cites W2774448753 @default.
- W2495261722 doi "https://doi.org/10.1016/b978-044452208-5/50050-8" @default.
- W2495261722 hasPublicationYear "2007" @default.
- W2495261722 type Work @default.
- W2495261722 sameAs 2495261722 @default.
- W2495261722 citedByCount "0" @default.
- W2495261722 crossrefType "book-chapter" @default.
- W2495261722 hasAuthorship W2495261722A5044507393 @default.
- W2495261722 hasAuthorship W2495261722A5088720034 @default.
- W2495261722 hasConcept C112680207 @default.
- W2495261722 hasConcept C118615104 @default.
- W2495261722 hasConcept C132954091 @default.