Matches in SemOpenAlex for { <https://semopenalex.org/work/W2495505923> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2495505923 abstract "Diabetes mellitus is one of the most common chronic diseases. The number of cases of diabetes in the world is likely to increase more than two fold in the next 30 years: from 115 million in 2000 to 284 million in 2030. This chapter is concerned with helping diabetic patients to manage themselves by developing a computer system that predicts their Blood Glucose Level (BGL) after 30 minutes on the basis of their current levels, so that they can administer insulin. This will enable the diabetic patient to continue living a normal daily life, as much as is possible. The prediction of BGLs based on the current levels BGLs become feasible through the advent of Continuous Glucose Monitoring (CGM) systems, which are able to sample patients' BGLs, typically 5 minutes, and computer systems that can process and analyse these samples. The approach taken in this chapter uses machine-learning techniques, specifically Genetic Algorithms (GA), to learn BGL patterns over an hour and the resulting value 30 minutes later, without questioning the patients about their food intake and activities. The GAs were invested using the raw BGLs as input and metadata derived from a Diabetic Dynamic Model of BGLs supplemented by the changes in patients' BGLs over the previous hour. The results obtained in a preliminary study including 4 virtual patients taken from the AIDA diabetes simulation software and 3 volunteers using the DexCom SEVEN system, show that the metadata approach gives more accurate predictions. Online learning, whereby new BGL patterns were incorporated into the prediction system as they were encountered, improved the results further." @default.
- W2495505923 created "2016-08-23" @default.
- W2495505923 creator A5002676539 @default.
- W2495505923 creator A5015556965 @default.
- W2495505923 creator A5064077270 @default.
- W2495505923 date "2014-01-01" @default.
- W2495505923 modified "2023-09-30" @default.
- W2495505923 title "Online Prediction of Blood Glucose Levels using Genetic Algorithm" @default.
- W2495505923 cites W1606784417 @default.
- W2495505923 cites W2007047125 @default.
- W2495505923 cites W2010389746 @default.
- W2495505923 cites W2033520933 @default.
- W2495505923 cites W2044973797 @default.
- W2495505923 cites W2054512658 @default.
- W2495505923 cites W2101539208 @default.
- W2495505923 cites W2110694570 @default.
- W2495505923 cites W2112217619 @default.
- W2495505923 cites W2141573420 @default.
- W2495505923 cites W2150248172 @default.
- W2495505923 cites W2166485949 @default.
- W2495505923 doi "https://doi.org/10.4018/978-1-4666-6078-6.ch014" @default.
- W2495505923 hasPublicationYear "2014" @default.
- W2495505923 type Work @default.
- W2495505923 sameAs 2495505923 @default.
- W2495505923 citedByCount "1" @default.
- W2495505923 countsByYear W24955059232017 @default.
- W2495505923 crossrefType "book-chapter" @default.
- W2495505923 hasAuthorship W2495505923A5002676539 @default.
- W2495505923 hasAuthorship W2495505923A5015556965 @default.
- W2495505923 hasAuthorship W2495505923A5064077270 @default.
- W2495505923 hasConcept C11413529 @default.
- W2495505923 hasConcept C119857082 @default.
- W2495505923 hasConcept C154945302 @default.
- W2495505923 hasConcept C41008148 @default.
- W2495505923 hasConcept C70721500 @default.
- W2495505923 hasConcept C86803240 @default.
- W2495505923 hasConcept C8880873 @default.
- W2495505923 hasConceptScore W2495505923C11413529 @default.
- W2495505923 hasConceptScore W2495505923C119857082 @default.
- W2495505923 hasConceptScore W2495505923C154945302 @default.
- W2495505923 hasConceptScore W2495505923C41008148 @default.
- W2495505923 hasConceptScore W2495505923C70721500 @default.
- W2495505923 hasConceptScore W2495505923C86803240 @default.
- W2495505923 hasConceptScore W2495505923C8880873 @default.
- W2495505923 hasLocation W24955059231 @default.
- W2495505923 hasOpenAccess W2495505923 @default.
- W2495505923 hasPrimaryLocation W24955059231 @default.
- W2495505923 hasRelatedWork W1977844392 @default.
- W2495505923 hasRelatedWork W1980298219 @default.
- W2495505923 hasRelatedWork W2141573420 @default.
- W2495505923 hasRelatedWork W2291512279 @default.
- W2495505923 hasRelatedWork W2755887058 @default.
- W2495505923 hasRelatedWork W2766101599 @default.
- W2495505923 hasRelatedWork W2793729473 @default.
- W2495505923 hasRelatedWork W2889249519 @default.
- W2495505923 hasRelatedWork W2911809190 @default.
- W2495505923 hasRelatedWork W2969122343 @default.
- W2495505923 hasRelatedWork W2969415860 @default.
- W2495505923 hasRelatedWork W2980794930 @default.
- W2495505923 hasRelatedWork W2990694362 @default.
- W2495505923 hasRelatedWork W2997326543 @default.
- W2495505923 hasRelatedWork W3040704051 @default.
- W2495505923 hasRelatedWork W3082207846 @default.
- W2495505923 hasRelatedWork W3110691093 @default.
- W2495505923 hasRelatedWork W3167747467 @default.
- W2495505923 hasRelatedWork W3197187428 @default.
- W2495505923 hasRelatedWork W2606355614 @default.
- W2495505923 isParatext "false" @default.
- W2495505923 isRetracted "false" @default.
- W2495505923 magId "2495505923" @default.
- W2495505923 workType "book-chapter" @default.