Matches in SemOpenAlex for { <https://semopenalex.org/work/W2495508754> ?p ?o ?g. }
- W2495508754 abstract "Abstract In the internet era, search engines play a vital role in information retrieval from web pages. Search engines arrange the retrieved results using various ranking algorithms. Additionally, retrieval is based on statistical searching techniques or content-based information extraction methods. It is still difficult for the user to understand the abstract details of every web page unless the user opens it separately to view the web content. This key point provided the motivation to propose and display an ontology-based object-attribute-value (O-A-V) information extraction system as a web model that acts as a user dictionary to refine the search keywords in the query for subsequent attempts. This first model is evaluated using various natural language processing (NLP) queries given as English sentences. Additionally, image search engines, such as Google Images, use content-based image information extraction and retrieval of web pages against the user query. To minimize the semantic gap between the image retrieval results and the expected user results, the domain ontology is built using image descriptions. The second proposed model initially examines natural language user queries using an NLP parser algorithm that will identify the subject-predicate-object (S-P-O) for the query. S-P-O extraction is an extended idea from the ontology-based O-A-V web model. Using this S-P-O extraction and considering the complex nature of writing SPARQL protocol and RDF query language (SPARQL) from the user point of view, the SPARQL auto query generation module is proposed, and it will auto generate the SPARQL query. Then, the query is deployed on the ontology, and images are retrieved based on the auto-generated SPARQL query. With the proposed methodology above, this paper seeks answers to following two questions. First, how to combine the use of domain ontology and semantics to improve information retrieval and user experience? Second, does this new unified framework improve the standard information retrieval systems? To answer these questions, a document retrieval system and an image retrieval system were built to test our proposed framework. The web document retrieval was tested against three key-words/bag-of-words models and a semantic ontology model. Image retrieval was tested on IAPR TC-12 benchmark dataset. The precision, recall and accuracy results were then compared against standard information retrieval systems using TREC_EVAL. The results indicated improvements over the standard systems. A controlled experiment was performed by test subjects querying the retrieval system in the absence and presence of our proposed framework. The queries were measured using two metrics, time and click-count. Comparisons were made on the retrieval performed with and without our proposed framework. The results were encouraging." @default.
- W2495508754 created "2016-08-23" @default.
- W2495508754 creator A5025056430 @default.
- W2495508754 creator A5044516036 @default.
- W2495508754 creator A5053271547 @default.
- W2495508754 creator A5090555712 @default.
- W2495508754 date "2016-11-05" @default.
- W2495508754 modified "2023-10-17" @default.
- W2495508754 title "A generic framework for ontology-based information retrieval and image retrieval in web data" @default.
- W2495508754 cites W125098954 @default.
- W2495508754 cites W1528193223 @default.
- W2495508754 cites W1555486317 @default.
- W2495508754 cites W1596295448 @default.
- W2495508754 cites W1596810201 @default.
- W2495508754 cites W1601422204 @default.
- W2495508754 cites W1608376207 @default.
- W2495508754 cites W171147417 @default.
- W2495508754 cites W1942169943 @default.
- W2495508754 cites W2002493648 @default.
- W2495508754 cites W2006147162 @default.
- W2495508754 cites W2019639681 @default.
- W2495508754 cites W2034989007 @default.
- W2495508754 cites W2046589280 @default.
- W2495508754 cites W2055758857 @default.
- W2495508754 cites W2077797310 @default.
- W2495508754 cites W2088727771 @default.
- W2495508754 cites W2102381086 @default.
- W2495508754 cites W2118131693 @default.
- W2495508754 cites W2119028572 @default.
- W2495508754 cites W2124564444 @default.
- W2495508754 cites W2131019049 @default.
- W2495508754 cites W2137028960 @default.
- W2495508754 cites W2137079713 @default.
- W2495508754 cites W2153225416 @default.
- W2495508754 cites W4210962885 @default.
- W2495508754 cites W4235505822 @default.
- W2495508754 cites W4239696231 @default.
- W2495508754 cites W4245861846 @default.
- W2495508754 cites W7436648 @default.
- W2495508754 doi "https://doi.org/10.1186/s13673-016-0074-1" @default.
- W2495508754 hasPublicationYear "2016" @default.
- W2495508754 type Work @default.
- W2495508754 sameAs 2495508754 @default.
- W2495508754 citedByCount "29" @default.
- W2495508754 countsByYear W24955087542017 @default.
- W2495508754 countsByYear W24955087542018 @default.
- W2495508754 countsByYear W24955087542019 @default.
- W2495508754 countsByYear W24955087542021 @default.
- W2495508754 countsByYear W24955087542022 @default.
- W2495508754 countsByYear W24955087542023 @default.
- W2495508754 crossrefType "journal-article" @default.
- W2495508754 hasAuthorship W2495508754A5025056430 @default.
- W2495508754 hasAuthorship W2495508754A5044516036 @default.
- W2495508754 hasAuthorship W2495508754A5053271547 @default.
- W2495508754 hasAuthorship W2495508754A5090555712 @default.
- W2495508754 hasBestOaLocation W24955087541 @default.
- W2495508754 hasConcept C111472728 @default.
- W2495508754 hasConcept C115961682 @default.
- W2495508754 hasConcept C118689300 @default.
- W2495508754 hasConcept C136764020 @default.
- W2495508754 hasConcept C138885662 @default.
- W2495508754 hasConcept C147497476 @default.
- W2495508754 hasConcept C154945302 @default.
- W2495508754 hasConcept C164120249 @default.
- W2495508754 hasConcept C166423231 @default.
- W2495508754 hasConcept C1667742 @default.
- W2495508754 hasConcept C189430467 @default.
- W2495508754 hasConcept C2129575 @default.
- W2495508754 hasConcept C21959979 @default.
- W2495508754 hasConcept C23123220 @default.
- W2495508754 hasConcept C25810664 @default.
- W2495508754 hasConcept C41008148 @default.
- W2495508754 hasConcept C41009113 @default.
- W2495508754 hasConcept C97854310 @default.
- W2495508754 hasConcept C99016210 @default.
- W2495508754 hasConceptScore W2495508754C111472728 @default.
- W2495508754 hasConceptScore W2495508754C115961682 @default.
- W2495508754 hasConceptScore W2495508754C118689300 @default.
- W2495508754 hasConceptScore W2495508754C136764020 @default.
- W2495508754 hasConceptScore W2495508754C138885662 @default.
- W2495508754 hasConceptScore W2495508754C147497476 @default.
- W2495508754 hasConceptScore W2495508754C154945302 @default.
- W2495508754 hasConceptScore W2495508754C164120249 @default.
- W2495508754 hasConceptScore W2495508754C166423231 @default.
- W2495508754 hasConceptScore W2495508754C1667742 @default.
- W2495508754 hasConceptScore W2495508754C189430467 @default.
- W2495508754 hasConceptScore W2495508754C2129575 @default.
- W2495508754 hasConceptScore W2495508754C21959979 @default.
- W2495508754 hasConceptScore W2495508754C23123220 @default.
- W2495508754 hasConceptScore W2495508754C25810664 @default.
- W2495508754 hasConceptScore W2495508754C41008148 @default.
- W2495508754 hasConceptScore W2495508754C41009113 @default.
- W2495508754 hasConceptScore W2495508754C97854310 @default.
- W2495508754 hasConceptScore W2495508754C99016210 @default.
- W2495508754 hasIssue "1" @default.
- W2495508754 hasLocation W24955087541 @default.
- W2495508754 hasOpenAccess W2495508754 @default.
- W2495508754 hasPrimaryLocation W24955087541 @default.
- W2495508754 hasRelatedWork W1551580192 @default.
- W2495508754 hasRelatedWork W1979642605 @default.