Matches in SemOpenAlex for { <https://semopenalex.org/work/W2495647680> ?p ?o ?g. }
- W2495647680 endingPage "1517" @default.
- W2495647680 startingPage "1506" @default.
- W2495647680 abstract "Background Clinical differentiation of parkinsonian syndromes is still challenging. Objectives A fully automated method for quantitative MRI analysis using atlas-based volumetry combined with support vector machine classification was evaluated for differentiation of parkinsonian syndromes in a multicenter study. Methods Atlas-based volumetry was performed on MRI data of healthy controls (n = 73) and patients with PD (204), PSP with Richardson's syndrome phenotype (106), MSA of the cerebellar type (21), and MSA of the Parkinsonian type (60), acquired on different scanners. Volumetric results were used as input for support vector machine classification of single subjects with leave-one-out cross-validation. Results The largest atrophy compared to controls was found for PSP with Richardson's syndrome phenotype patients in midbrain (−15%), midsagittal midbrain tegmentum plane (−20%), and superior cerebellar peduncles (−13%), for MSA of the cerebellar type in pons (−33%), cerebellum (−23%), and middle cerebellar peduncles (−36%), and for MSA of the parkinsonian type in the putamen (−23%). The majority of binary support vector machine classifications between the groups resulted in balanced accuracies of >80%. With MSA of the cerebellar and parkinsonian type combined in one group, support vector machine classification of PD, PSP and MSA achieved sensitivities of 79% to 87% and specificities of 87% to 96%. Extraction of weighting factors confirmed that midbrain, basal ganglia, and cerebellar peduncles had the largest relevance for classification. Conclusions Brain volumetry combined with support vector machine classification allowed for reliable automated differentiation of parkinsonian syndromes on single-patient level even for MRI acquired on different scanners. © 2016 International Parkinson and Movement Disorder Society" @default.
- W2495647680 created "2016-08-23" @default.
- W2495647680 creator A5009100265 @default.
- W2495647680 creator A5010971715 @default.
- W2495647680 creator A5013035262 @default.
- W2495647680 creator A5014117021 @default.
- W2495647680 creator A5015701509 @default.
- W2495647680 creator A5028611917 @default.
- W2495647680 creator A5041449716 @default.
- W2495647680 creator A5061141769 @default.
- W2495647680 creator A5061542163 @default.
- W2495647680 creator A5062015847 @default.
- W2495647680 creator A5068747450 @default.
- W2495647680 creator A5068749612 @default.
- W2495647680 creator A5074139715 @default.
- W2495647680 creator A5074321110 @default.
- W2495647680 creator A5090410744 @default.
- W2495647680 date "2016-10-01" @default.
- W2495647680 modified "2023-10-09" @default.
- W2495647680 title "Differentiation of neurodegenerative parkinsonian syndromes by volumetric magnetic resonance imaging analysis and support vector machine classification" @default.
- W2495647680 cites W1482512668 @default.
- W2495647680 cites W1497180632 @default.
- W2495647680 cites W1599242432 @default.
- W2495647680 cites W1827683581 @default.
- W2495647680 cites W1932600547 @default.
- W2495647680 cites W1965278136 @default.
- W2495647680 cites W1969959732 @default.
- W2495647680 cites W1973158444 @default.
- W2495647680 cites W1982371718 @default.
- W2495647680 cites W1982547105 @default.
- W2495647680 cites W1983229938 @default.
- W2495647680 cites W1987528617 @default.
- W2495647680 cites W1994605499 @default.
- W2495647680 cites W1999873322 @default.
- W2495647680 cites W2006096283 @default.
- W2495647680 cites W2008235266 @default.
- W2495647680 cites W2008678816 @default.
- W2495647680 cites W2019795338 @default.
- W2495647680 cites W2020975638 @default.
- W2495647680 cites W2022313014 @default.
- W2495647680 cites W2024377399 @default.
- W2495647680 cites W2027703088 @default.
- W2495647680 cites W2028739995 @default.
- W2495647680 cites W2031931922 @default.
- W2495647680 cites W2034517662 @default.
- W2495647680 cites W2034761873 @default.
- W2495647680 cites W2036028805 @default.
- W2495647680 cites W2040686972 @default.
- W2495647680 cites W2051128659 @default.
- W2495647680 cites W2066973278 @default.
- W2495647680 cites W2067217056 @default.
- W2495647680 cites W2069964327 @default.
- W2495647680 cites W2071135389 @default.
- W2495647680 cites W2072879198 @default.
- W2495647680 cites W2083099567 @default.
- W2495647680 cites W2083110259 @default.
- W2495647680 cites W2090541644 @default.
- W2495647680 cites W2094637188 @default.
- W2495647680 cites W2101135654 @default.
- W2495647680 cites W2107130702 @default.
- W2495647680 cites W2121046597 @default.
- W2495647680 cites W2121981025 @default.
- W2495647680 cites W2130519776 @default.
- W2495647680 cites W2133054185 @default.
- W2495647680 cites W2134575001 @default.
- W2495647680 cites W2136276906 @default.
- W2495647680 cites W2136557657 @default.
- W2495647680 cites W2148828979 @default.
- W2495647680 cites W2153635508 @default.
- W2495647680 cites W2155298532 @default.
- W2495647680 cites W2155299862 @default.
- W2495647680 cites W2157609814 @default.
- W2495647680 cites W2165934826 @default.
- W2495647680 cites W2166758207 @default.
- W2495647680 cites W2168525520 @default.
- W2495647680 cites W2169898642 @default.
- W2495647680 cites W2170698464 @default.
- W2495647680 cites W2171831801 @default.
- W2495647680 cites W2172000360 @default.
- W2495647680 cites W2225755951 @default.
- W2495647680 cites W2294708275 @default.
- W2495647680 cites W4237977107 @default.
- W2495647680 cites W4376595786 @default.
- W2495647680 doi "https://doi.org/10.1002/mds.26715" @default.
- W2495647680 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27452874" @default.
- W2495647680 hasPublicationYear "2016" @default.
- W2495647680 type Work @default.
- W2495647680 sameAs 2495647680 @default.
- W2495647680 citedByCount "112" @default.
- W2495647680 countsByYear W24956476802016 @default.
- W2495647680 countsByYear W24956476802017 @default.
- W2495647680 countsByYear W24956476802018 @default.
- W2495647680 countsByYear W24956476802019 @default.
- W2495647680 countsByYear W24956476802020 @default.
- W2495647680 countsByYear W24956476802021 @default.
- W2495647680 countsByYear W24956476802022 @default.
- W2495647680 countsByYear W24956476802023 @default.
- W2495647680 crossrefType "journal-article" @default.