Matches in SemOpenAlex for { <https://semopenalex.org/work/W2495681666> ?p ?o ?g. }
Showing items 1 to 51 of
51
with 100 items per page.
- W2495681666 endingPage "697" @default.
- W2495681666 startingPage "693" @default.
- W2495681666 abstract "The method described in this chapter is designed for data mining and learning on logic data. This type of data is composed of records that can be described by the presence or absence of a finite number of properties. Formally, such records can be described by variables that may assume only the values true or false, usually referred to as logic (or Boolean) variables. In real applications, it may also happen that the presence or absence of some property cannot be verified for some record; in such a case we consider that variable to be unknown (the capability to treat formally data with missing values is a feature of logic-based methods). For example, to describe patient records in medical diagnosis applications, one may use the logic variables healthy, old, has_high_temperature, among many others. A very common data mining task is to find, based on training data, the rules that separate two subsets of the available records, or explains the belonging of the data to one subset or the other. For example, one may desire to find a rule that, based one the many variables observed in patient records, is able to distinguish healthy patients from sick ones. Such a rule, if sufficiently precise, may then be used to classify new data and/or to gain information from the available data. This task is often referred to as machine learning or pattern recognition and accounts for a significant portion of the research conducted in the data mining community. When the data considered is in logic form or can be transformed into it by some reasonable process, it is of great interest to determine explanatory rules in the form of the combination of logic variables, or logic formulas. In the example above, a rule derived from data could be:if (has_high_temperature is true) and (running_nose is true) then (the patient is not healthy)." @default.
- W2495681666 created "2016-08-23" @default.
- W2495681666 creator A5018437728 @default.
- W2495681666 creator A5078001324 @default.
- W2495681666 date "2011-05-24" @default.
- W2495681666 modified "2023-10-16" @default.
- W2495681666 title "Lsquare System for Mining Logic Data" @default.
- W2495681666 doi "https://doi.org/10.4018/978-1-59140-557-3.ch132" @default.
- W2495681666 hasPublicationYear "2011" @default.
- W2495681666 type Work @default.
- W2495681666 sameAs 2495681666 @default.
- W2495681666 citedByCount "5" @default.
- W2495681666 countsByYear W24956816662012 @default.
- W2495681666 countsByYear W24956816662014 @default.
- W2495681666 countsByYear W24956816662018 @default.
- W2495681666 crossrefType "book-chapter" @default.
- W2495681666 hasAuthorship W2495681666A5018437728 @default.
- W2495681666 hasAuthorship W2495681666A5078001324 @default.
- W2495681666 hasConcept C124101348 @default.
- W2495681666 hasConcept C41008148 @default.
- W2495681666 hasConceptScore W2495681666C124101348 @default.
- W2495681666 hasConceptScore W2495681666C41008148 @default.
- W2495681666 hasLocation W24956816661 @default.
- W2495681666 hasOpenAccess W2495681666 @default.
- W2495681666 hasPrimaryLocation W24956816661 @default.
- W2495681666 hasRelatedWork W1521264670 @default.
- W2495681666 hasRelatedWork W1601099977 @default.
- W2495681666 hasRelatedWork W1627195734 @default.
- W2495681666 hasRelatedWork W2027304786 @default.
- W2495681666 hasRelatedWork W2068848220 @default.
- W2495681666 hasRelatedWork W2144363439 @default.
- W2495681666 hasRelatedWork W2149167902 @default.
- W2495681666 hasRelatedWork W2337391146 @default.
- W2495681666 hasRelatedWork W2541878715 @default.
- W2495681666 hasRelatedWork W2587304220 @default.
- W2495681666 hasRelatedWork W2783579733 @default.
- W2495681666 hasRelatedWork W2951769867 @default.
- W2495681666 hasRelatedWork W3205208494 @default.
- W2495681666 hasRelatedWork W44177890 @default.
- W2495681666 hasRelatedWork W2600547038 @default.
- W2495681666 hasRelatedWork W2868064357 @default.
- W2495681666 hasRelatedWork W2976130507 @default.
- W2495681666 hasRelatedWork W3002635760 @default.
- W2495681666 hasRelatedWork W3018068791 @default.
- W2495681666 hasRelatedWork W3028348019 @default.
- W2495681666 isParatext "false" @default.
- W2495681666 isRetracted "false" @default.
- W2495681666 magId "2495681666" @default.
- W2495681666 workType "book-chapter" @default.