Matches in SemOpenAlex for { <https://semopenalex.org/work/W2495998536> ?p ?o ?g. }
- W2495998536 abstract "While question answering (QA) with neural network, i.e. neural QA, has achieved promising results in recent years, lacking of large scale real-word QA dataset is still a challenge for developing and evaluating neural QA system. To alleviate this problem, we propose a large scale human annotated real-world QA dataset WebQA with more than 42k questions and 556k evidences. As existing neural QA methods resolve QA either as sequence generation or classification/ranking problem, they face challenges of expensive softmax computation, unseen answers handling or separate candidate answer generation component. In this work, we cast neural QA as a sequence labeling problem and propose an end-to-end sequence labeling model, which overcomes all the above challenges. Experimental results on WebQA show that our model outperforms the baselines significantly with an F1 score of 74.69% with word-based input, and the performance drops only 3.72 F1 points with more challenging character-based input." @default.
- W2495998536 created "2016-08-23" @default.
- W2495998536 creator A5000432967 @default.
- W2495998536 creator A5006907783 @default.
- W2495998536 creator A5029367785 @default.
- W2495998536 creator A5030630246 @default.
- W2495998536 creator A5066557235 @default.
- W2495998536 creator A5071458554 @default.
- W2495998536 creator A5083556808 @default.
- W2495998536 date "2016-07-21" @default.
- W2495998536 modified "2023-10-16" @default.
- W2495998536 title "Dataset and Neural Recurrent Sequence Labeling Model for Open-Domain Factoid Question Answering" @default.
- W2495998536 cites W1810943226 @default.
- W2495998536 cites W1904365287 @default.
- W2495998536 cites W1940872118 @default.
- W2495998536 cites W2112796928 @default.
- W2495998536 cites W2125313055 @default.
- W2495998536 cites W2127426251 @default.
- W2495998536 cites W2130237711 @default.
- W2495998536 cites W2132339004 @default.
- W2495998536 cites W2147880316 @default.
- W2495998536 cites W2163561827 @default.
- W2495998536 cites W2194775991 @default.
- W2495998536 cites W2251143283 @default.
- W2495998536 cites W2251287417 @default.
- W2495998536 cites W2251599843 @default.
- W2495998536 cites W2252136820 @default.
- W2495998536 cites W2264105282 @default.
- W2495998536 cites W2387784407 @default.
- W2495998536 cites W2411480514 @default.
- W2495998536 cites W2415755012 @default.
- W2495998536 cites W2477209458 @default.
- W2495998536 cites W2949615363 @default.
- W2495998536 cites W2950527759 @default.
- W2495998536 cites W2963595025 @default.
- W2495998536 cites W2963900105 @default.
- W2495998536 cites W2964091467 @default.
- W2495998536 cites W2964236999 @default.
- W2495998536 cites W2964267515 @default.
- W2495998536 cites W2964308564 @default.
- W2495998536 cites W580074167 @default.
- W2495998536 cites W2417356443 @default.
- W2495998536 cites W2584341106 @default.
- W2495998536 doi "https://doi.org/10.48550/arxiv.1607.06275" @default.
- W2495998536 hasPublicationYear "2016" @default.
- W2495998536 type Work @default.
- W2495998536 sameAs 2495998536 @default.
- W2495998536 citedByCount "38" @default.
- W2495998536 countsByYear W24959985362016 @default.
- W2495998536 countsByYear W24959985362017 @default.
- W2495998536 countsByYear W24959985362018 @default.
- W2495998536 countsByYear W24959985362019 @default.
- W2495998536 countsByYear W24959985362020 @default.
- W2495998536 countsByYear W24959985362021 @default.
- W2495998536 crossrefType "posted-content" @default.
- W2495998536 hasAuthorship W2495998536A5000432967 @default.
- W2495998536 hasAuthorship W2495998536A5006907783 @default.
- W2495998536 hasAuthorship W2495998536A5029367785 @default.
- W2495998536 hasAuthorship W2495998536A5030630246 @default.
- W2495998536 hasAuthorship W2495998536A5066557235 @default.
- W2495998536 hasAuthorship W2495998536A5071458554 @default.
- W2495998536 hasAuthorship W2495998536A5083556808 @default.
- W2495998536 hasBestOaLocation W24959985361 @default.
- W2495998536 hasConcept C119857082 @default.
- W2495998536 hasConcept C147168706 @default.
- W2495998536 hasConcept C154945302 @default.
- W2495998536 hasConcept C162324750 @default.
- W2495998536 hasConcept C187736073 @default.
- W2495998536 hasConcept C188441871 @default.
- W2495998536 hasConcept C189430467 @default.
- W2495998536 hasConcept C204321447 @default.
- W2495998536 hasConcept C2524010 @default.
- W2495998536 hasConcept C2778112365 @default.
- W2495998536 hasConcept C2780451532 @default.
- W2495998536 hasConcept C33923547 @default.
- W2495998536 hasConcept C35639132 @default.
- W2495998536 hasConcept C41008148 @default.
- W2495998536 hasConcept C44291984 @default.
- W2495998536 hasConcept C50644808 @default.
- W2495998536 hasConcept C54355233 @default.
- W2495998536 hasConcept C86803240 @default.
- W2495998536 hasConcept C90805587 @default.
- W2495998536 hasConceptScore W2495998536C119857082 @default.
- W2495998536 hasConceptScore W2495998536C147168706 @default.
- W2495998536 hasConceptScore W2495998536C154945302 @default.
- W2495998536 hasConceptScore W2495998536C162324750 @default.
- W2495998536 hasConceptScore W2495998536C187736073 @default.
- W2495998536 hasConceptScore W2495998536C188441871 @default.
- W2495998536 hasConceptScore W2495998536C189430467 @default.
- W2495998536 hasConceptScore W2495998536C204321447 @default.
- W2495998536 hasConceptScore W2495998536C2524010 @default.
- W2495998536 hasConceptScore W2495998536C2778112365 @default.
- W2495998536 hasConceptScore W2495998536C2780451532 @default.
- W2495998536 hasConceptScore W2495998536C33923547 @default.
- W2495998536 hasConceptScore W2495998536C35639132 @default.
- W2495998536 hasConceptScore W2495998536C41008148 @default.
- W2495998536 hasConceptScore W2495998536C44291984 @default.
- W2495998536 hasConceptScore W2495998536C50644808 @default.
- W2495998536 hasConceptScore W2495998536C54355233 @default.
- W2495998536 hasConceptScore W2495998536C86803240 @default.