Matches in SemOpenAlex for { <https://semopenalex.org/work/W2496264785> ?p ?o ?g. }
- W2496264785 endingPage "234" @default.
- W2496264785 startingPage "220" @default.
- W2496264785 abstract "In numerous applications and especially in the life science domain, examples are labelled at a higher level of granularity. For example, binary classification is dominant in many of these data sets, with the positive class denoting the existence of a particular disease in medical diagnosis applications. Such labelling does not depict the reality of having different categories of the same disease; a fact evidenced in the continuous research in root causes and variations of symptoms in a number of diseases. In a quest to enhance such diagnosis, data sets were decomposed using clustering of each class to reveal hidden categories. We then apply the widely adopted ensemble classification technique Random Forests. Such class decomposition has two advantages: (1) diversification of the input that enhances the ensemble classification; and (2) improving class separability, easing the follow-up classification process. However, to be able to apply Random Forests on such class decomposed data, three main parameters need to be set: number of trees forming the ensemble, number of features to split on at each node, and a vector representing the number of clusters in each class. The large search space for tuning these parameters has motivated the use of Genetic Algorithm to optimise the solution. A thorough experimental study on 22 real data sets was conducted, predominantly in a variety of life science applications. To prove the applicability of the method to other areas of application, the proposed method was tested on a number of data sets from other domains. Three variations of Random Forests including the proposed method as well as a boosting ensemble classifier were used in the experimental study. The results prove the superiority of the proposed method in boosting up the accuracy." @default.
- W2496264785 created "2016-08-23" @default.
- W2496264785 creator A5016157034 @default.
- W2496264785 creator A5040807448 @default.
- W2496264785 date "2017-04-01" @default.
- W2496264785 modified "2023-10-14" @default.
- W2496264785 title "A genetic algorithm approach to optimising random forests applied to class engineered data" @default.
- W2496264785 cites W1982067074 @default.
- W2496264785 cites W1988378196 @default.
- W2496264785 cites W1995396954 @default.
- W2496264785 cites W2006251480 @default.
- W2496264785 cites W2014374971 @default.
- W2496264785 cites W2025208635 @default.
- W2496264785 cites W2037036168 @default.
- W2496264785 cites W2047094503 @default.
- W2496264785 cites W2048697945 @default.
- W2496264785 cites W2064186732 @default.
- W2496264785 cites W2068680128 @default.
- W2496264785 cites W2070493638 @default.
- W2496264785 cites W2070855716 @default.
- W2496264785 cites W2072613728 @default.
- W2496264785 cites W2088422930 @default.
- W2496264785 cites W2104634417 @default.
- W2496264785 cites W2118044993 @default.
- W2496264785 cites W2139086914 @default.
- W2496264785 cites W2149376583 @default.
- W2496264785 cites W2151097342 @default.
- W2496264785 cites W2162506329 @default.
- W2496264785 cites W2171149164 @default.
- W2496264785 cites W2171647935 @default.
- W2496264785 cites W2267727210 @default.
- W2496264785 cites W2471273676 @default.
- W2496264785 cites W2911964244 @default.
- W2496264785 cites W3105728206 @default.
- W2496264785 cites W4212883601 @default.
- W2496264785 cites W753187444 @default.
- W2496264785 doi "https://doi.org/10.1016/j.ins.2016.08.007" @default.
- W2496264785 hasPublicationYear "2017" @default.
- W2496264785 type Work @default.
- W2496264785 sameAs 2496264785 @default.
- W2496264785 citedByCount "54" @default.
- W2496264785 countsByYear W24962647852017 @default.
- W2496264785 countsByYear W24962647852018 @default.
- W2496264785 countsByYear W24962647852019 @default.
- W2496264785 countsByYear W24962647852020 @default.
- W2496264785 countsByYear W24962647852021 @default.
- W2496264785 countsByYear W24962647852022 @default.
- W2496264785 countsByYear W24962647852023 @default.
- W2496264785 crossrefType "journal-article" @default.
- W2496264785 hasAuthorship W2496264785A5016157034 @default.
- W2496264785 hasAuthorship W2496264785A5040807448 @default.
- W2496264785 hasBestOaLocation W24962647852 @default.
- W2496264785 hasConcept C11413529 @default.
- W2496264785 hasConcept C119857082 @default.
- W2496264785 hasConcept C12267149 @default.
- W2496264785 hasConcept C124101348 @default.
- W2496264785 hasConcept C153180895 @default.
- W2496264785 hasConcept C154945302 @default.
- W2496264785 hasConcept C169258074 @default.
- W2496264785 hasConcept C177264268 @default.
- W2496264785 hasConcept C199360897 @default.
- W2496264785 hasConcept C2777212361 @default.
- W2496264785 hasConcept C33923547 @default.
- W2496264785 hasConcept C34872919 @default.
- W2496264785 hasConcept C41008148 @default.
- W2496264785 hasConcept C73555534 @default.
- W2496264785 hasConceptScore W2496264785C11413529 @default.
- W2496264785 hasConceptScore W2496264785C119857082 @default.
- W2496264785 hasConceptScore W2496264785C12267149 @default.
- W2496264785 hasConceptScore W2496264785C124101348 @default.
- W2496264785 hasConceptScore W2496264785C153180895 @default.
- W2496264785 hasConceptScore W2496264785C154945302 @default.
- W2496264785 hasConceptScore W2496264785C169258074 @default.
- W2496264785 hasConceptScore W2496264785C177264268 @default.
- W2496264785 hasConceptScore W2496264785C199360897 @default.
- W2496264785 hasConceptScore W2496264785C2777212361 @default.
- W2496264785 hasConceptScore W2496264785C33923547 @default.
- W2496264785 hasConceptScore W2496264785C34872919 @default.
- W2496264785 hasConceptScore W2496264785C41008148 @default.
- W2496264785 hasConceptScore W2496264785C73555534 @default.
- W2496264785 hasLocation W24962647851 @default.
- W2496264785 hasLocation W24962647852 @default.
- W2496264785 hasLocation W24962647853 @default.
- W2496264785 hasLocation W24962647854 @default.
- W2496264785 hasOpenAccess W2496264785 @default.
- W2496264785 hasPrimaryLocation W24962647851 @default.
- W2496264785 hasRelatedWork W2041399278 @default.
- W2496264785 hasRelatedWork W2136184105 @default.
- W2496264785 hasRelatedWork W2985924212 @default.
- W2496264785 hasRelatedWork W3013515612 @default.
- W2496264785 hasRelatedWork W3195168932 @default.
- W2496264785 hasRelatedWork W3195610867 @default.
- W2496264785 hasRelatedWork W4321636153 @default.
- W2496264785 hasRelatedWork W4377964522 @default.
- W2496264785 hasRelatedWork W2187500075 @default.
- W2496264785 hasRelatedWork W2345184372 @default.
- W2496264785 hasVolume "384" @default.
- W2496264785 isParatext "false" @default.