Matches in SemOpenAlex for { <https://semopenalex.org/work/W2496671552> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2496671552 abstract "With the rise of the computer age, various kinds of information can be easily accessed in digital format. However, the objects found within this information, such as people, places, dates, and firms, form a tangled and complex relationship that is usually challenging to untangle.In this dissertation, we aim to unravel the relationship among objects to the finest extent: what are the similarity levels between any pairs of objects. Discovering similar objects can be the foundation of several research problems and applications. For example, objects can be clustered into several groups by merging similar objects together. This merging process can be recursively performed such that a hierarchical structure of these terms is constructed. In addition, the hidden relationship among objects can be inferred by examining the similar objects that do not explicitly interact with each other.This dissertation examines the problem of discovering similar objects in two different settings: (1) discovering similar objects based on the interaction among them, and (2) discovering similar objects based on their meta-data. We will mainly focus on the first setting. The interactions among objects are modeled by a network structure, in which each node represents one object, and an edge is presented if the two objects have interacted with each other. In the second setting, we examine the similarity problem where additional information other than interacting history is available. In the second setting, we targeted digital library objects, such as papers, authors, published venues (i.e., the published conference or journal), etc. The meta-data of these objects could be, for example, the citation counts of the paper, the affiliation of the author, and the topics of the conference. These meta-data are utilized to infer the similar objects, such as similar terms, similar venues, or relevant authors given a topic.To validate our proposed models and methodologies, we conducted various experiments on several different data sets to discover the hidden relationship among the target objects. This includes (1) the relationship between the authors, papers, and venues in the given digital library, (2) the actors, actresses, and the movies in the given movie information, and (3) the diseases and the genes of patients. In addition, we implemented two live systems based on CiteSeerX digital library to bring several of these research results into practical products. The first system, CollabSeer, recommends potential collaborators based on a user’s research interest and previous coauthoring behaviors. The second one, CSSeer, recommends a list of experts given a term of interest based on the similarity score between the query term and the publication and citation history of the authors. Both systems are highly efficient in handling more than one million papers and over 300 thousand disambiguated authors." @default.
- W2496671552 created "2016-08-23" @default.
- W2496671552 creator A5001294898 @default.
- W2496671552 creator A5078925594 @default.
- W2496671552 date "2013-01-01" @default.
- W2496671552 modified "2023-09-27" @default.
- W2496671552 title "Identifying similar objects in social networks and digital libraries" @default.
- W2496671552 hasPublicationYear "2013" @default.
- W2496671552 type Work @default.
- W2496671552 sameAs 2496671552 @default.
- W2496671552 citedByCount "0" @default.
- W2496671552 crossrefType "journal-article" @default.
- W2496671552 hasAuthorship W2496671552A5001294898 @default.
- W2496671552 hasAuthorship W2496671552A5078925594 @default.
- W2496671552 hasConcept C103278499 @default.
- W2496671552 hasConcept C111919701 @default.
- W2496671552 hasConcept C115961682 @default.
- W2496671552 hasConcept C120665830 @default.
- W2496671552 hasConcept C121332964 @default.
- W2496671552 hasConcept C124952713 @default.
- W2496671552 hasConcept C127413603 @default.
- W2496671552 hasConcept C136764020 @default.
- W2496671552 hasConcept C142362112 @default.
- W2496671552 hasConcept C154945302 @default.
- W2496671552 hasConcept C164913051 @default.
- W2496671552 hasConcept C192209626 @default.
- W2496671552 hasConcept C23123220 @default.
- W2496671552 hasConcept C2781238097 @default.
- W2496671552 hasConcept C41008148 @default.
- W2496671552 hasConcept C513874922 @default.
- W2496671552 hasConcept C62611344 @default.
- W2496671552 hasConcept C66938386 @default.
- W2496671552 hasConcept C98045186 @default.
- W2496671552 hasConceptScore W2496671552C103278499 @default.
- W2496671552 hasConceptScore W2496671552C111919701 @default.
- W2496671552 hasConceptScore W2496671552C115961682 @default.
- W2496671552 hasConceptScore W2496671552C120665830 @default.
- W2496671552 hasConceptScore W2496671552C121332964 @default.
- W2496671552 hasConceptScore W2496671552C124952713 @default.
- W2496671552 hasConceptScore W2496671552C127413603 @default.
- W2496671552 hasConceptScore W2496671552C136764020 @default.
- W2496671552 hasConceptScore W2496671552C142362112 @default.
- W2496671552 hasConceptScore W2496671552C154945302 @default.
- W2496671552 hasConceptScore W2496671552C164913051 @default.
- W2496671552 hasConceptScore W2496671552C192209626 @default.
- W2496671552 hasConceptScore W2496671552C23123220 @default.
- W2496671552 hasConceptScore W2496671552C2781238097 @default.
- W2496671552 hasConceptScore W2496671552C41008148 @default.
- W2496671552 hasConceptScore W2496671552C513874922 @default.
- W2496671552 hasConceptScore W2496671552C62611344 @default.
- W2496671552 hasConceptScore W2496671552C66938386 @default.
- W2496671552 hasConceptScore W2496671552C98045186 @default.
- W2496671552 hasLocation W24966715521 @default.
- W2496671552 hasOpenAccess W2496671552 @default.
- W2496671552 hasPrimaryLocation W24966715521 @default.
- W2496671552 hasRelatedWork W2057377241 @default.
- W2496671552 hasRelatedWork W2109910628 @default.
- W2496671552 hasRelatedWork W2140477420 @default.
- W2496671552 hasRelatedWork W2259123132 @default.
- W2496671552 hasRelatedWork W2262344466 @default.
- W2496671552 hasRelatedWork W2347022942 @default.
- W2496671552 hasRelatedWork W2404233270 @default.
- W2496671552 hasRelatedWork W2406828145 @default.
- W2496671552 hasRelatedWork W2429300731 @default.
- W2496671552 hasRelatedWork W2729859262 @default.
- W2496671552 hasRelatedWork W2755568384 @default.
- W2496671552 hasRelatedWork W2761699191 @default.
- W2496671552 hasRelatedWork W2940420125 @default.
- W2496671552 hasRelatedWork W3008122813 @default.
- W2496671552 hasRelatedWork W3045968601 @default.
- W2496671552 hasRelatedWork W3128116186 @default.
- W2496671552 hasRelatedWork W53560565 @default.
- W2496671552 hasRelatedWork W601953741 @default.
- W2496671552 hasRelatedWork W842486290 @default.
- W2496671552 hasRelatedWork W2335348381 @default.
- W2496671552 isParatext "false" @default.
- W2496671552 isRetracted "false" @default.
- W2496671552 magId "2496671552" @default.
- W2496671552 workType "article" @default.