Matches in SemOpenAlex for { <https://semopenalex.org/work/W2496759915> ?p ?o ?g. }
- W2496759915 endingPage "1110" @default.
- W2496759915 startingPage "1110" @default.
- W2496759915 abstract "Existing automatic building extraction methods are not effective in extracting buildings which are small in size and have transparent roofs. The application of large area threshold prohibits detection of small buildings and the use of ground points in generating the building mask prevents detection of transparent buildings. In addition, the existing methods use numerous parameters to extract buildings in complex environments, e.g., hilly area and high vegetation. However, the empirical tuning of large number of parameters reduces the robustness of building extraction methods. This paper proposes a novel Gradient-based Building Extraction (GBE) method to address these limitations. The proposed method transforms the Light Detection And Ranging (LiDAR) height information into intensity image without interpolation of point heights and then analyses the gradient information in the image. Generally, building roof planes have a constant height change along the slope of a roof plane whereas trees have a random height change. With such an analysis, buildings of a greater range of sizes with a transparent or opaque roof can be extracted. In addition, a local colour matching approach is introduced as a post-processing stage to eliminate trees. This stage of our proposed method does not require any manual setting and all parameters are set automatically from the data. The other post processing stages including variance, point density and shadow elimination are also applied to verify the extracted buildings, where comparatively fewer empirically set parameters are used. The performance of the proposed GBE method is evaluated on two benchmark data sets by using the object and pixel based metrics (completeness, correctness and quality). Our experimental results show the effectiveness of the proposed method in eliminating trees, extracting buildings of all sizes, and extracting buildings with and without transparent roof. When compared with current state-of-the-art building extraction methods, the proposed method outperforms the existing methods in various evaluation metrics." @default.
- W2496759915 created "2016-08-23" @default.
- W2496759915 creator A5002372576 @default.
- W2496759915 creator A5007657733 @default.
- W2496759915 creator A5073580487 @default.
- W2496759915 creator A5083883712 @default.
- W2496759915 date "2016-07-19" @default.
- W2496759915 modified "2023-09-26" @default.
- W2496759915 title "A Robust Gradient Based Method for Building Extraction from LiDAR and Photogrammetric Imagery" @default.
- W2496759915 cites W1964167192 @default.
- W2496759915 cites W1981565399 @default.
- W2496759915 cites W1986427369 @default.
- W2496759915 cites W1994669405 @default.
- W2496759915 cites W2004433018 @default.
- W2496759915 cites W2008477163 @default.
- W2496759915 cites W2018839022 @default.
- W2496759915 cites W2019545415 @default.
- W2496759915 cites W2029625183 @default.
- W2496759915 cites W2030515688 @default.
- W2496759915 cites W2033466115 @default.
- W2496759915 cites W2038771072 @default.
- W2496759915 cites W2054091530 @default.
- W2496759915 cites W2077264955 @default.
- W2496759915 cites W2085665642 @default.
- W2496759915 cites W2088805832 @default.
- W2496759915 cites W2104525659 @default.
- W2496759915 cites W2104872621 @default.
- W2496759915 cites W2117186870 @default.
- W2496759915 cites W2128958887 @default.
- W2496759915 cites W2134337515 @default.
- W2496759915 cites W2136651098 @default.
- W2496759915 cites W2143637435 @default.
- W2496759915 cites W2150089019 @default.
- W2496759915 cites W2154465885 @default.
- W2496759915 cites W2155148032 @default.
- W2496759915 cites W2160797066 @default.
- W2496759915 cites W2164976328 @default.
- W2496759915 cites W2170912380 @default.
- W2496759915 doi "https://doi.org/10.3390/s16071110" @default.
- W2496759915 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4970154" @default.
- W2496759915 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27447631" @default.
- W2496759915 hasPublicationYear "2016" @default.
- W2496759915 type Work @default.
- W2496759915 sameAs 2496759915 @default.
- W2496759915 citedByCount "18" @default.
- W2496759915 countsByYear W24967599152018 @default.
- W2496759915 countsByYear W24967599152019 @default.
- W2496759915 countsByYear W24967599152020 @default.
- W2496759915 countsByYear W24967599152021 @default.
- W2496759915 countsByYear W24967599152022 @default.
- W2496759915 countsByYear W24967599152023 @default.
- W2496759915 crossrefType "journal-article" @default.
- W2496759915 hasAuthorship W2496759915A5002372576 @default.
- W2496759915 hasAuthorship W2496759915A5007657733 @default.
- W2496759915 hasAuthorship W2496759915A5073580487 @default.
- W2496759915 hasAuthorship W2496759915A5083883712 @default.
- W2496759915 hasBestOaLocation W24967599151 @default.
- W2496759915 hasConcept C104317684 @default.
- W2496759915 hasConcept C115051666 @default.
- W2496759915 hasConcept C117455697 @default.
- W2496759915 hasConcept C117797892 @default.
- W2496759915 hasConcept C127413603 @default.
- W2496759915 hasConcept C154945302 @default.
- W2496759915 hasConcept C15744967 @default.
- W2496759915 hasConcept C185592680 @default.
- W2496759915 hasConcept C205649164 @default.
- W2496759915 hasConcept C2776748203 @default.
- W2496759915 hasConcept C2778530916 @default.
- W2496759915 hasConcept C31972630 @default.
- W2496759915 hasConcept C41008148 @default.
- W2496759915 hasConcept C44154836 @default.
- W2496759915 hasConcept C51399673 @default.
- W2496759915 hasConcept C542102704 @default.
- W2496759915 hasConcept C55493867 @default.
- W2496759915 hasConcept C62649853 @default.
- W2496759915 hasConcept C63479239 @default.
- W2496759915 hasConcept C66938386 @default.
- W2496759915 hasConcept C76155785 @default.
- W2496759915 hasConceptScore W2496759915C104317684 @default.
- W2496759915 hasConceptScore W2496759915C115051666 @default.
- W2496759915 hasConceptScore W2496759915C117455697 @default.
- W2496759915 hasConceptScore W2496759915C117797892 @default.
- W2496759915 hasConceptScore W2496759915C127413603 @default.
- W2496759915 hasConceptScore W2496759915C154945302 @default.
- W2496759915 hasConceptScore W2496759915C15744967 @default.
- W2496759915 hasConceptScore W2496759915C185592680 @default.
- W2496759915 hasConceptScore W2496759915C205649164 @default.
- W2496759915 hasConceptScore W2496759915C2776748203 @default.
- W2496759915 hasConceptScore W2496759915C2778530916 @default.
- W2496759915 hasConceptScore W2496759915C31972630 @default.
- W2496759915 hasConceptScore W2496759915C41008148 @default.
- W2496759915 hasConceptScore W2496759915C44154836 @default.
- W2496759915 hasConceptScore W2496759915C51399673 @default.
- W2496759915 hasConceptScore W2496759915C542102704 @default.
- W2496759915 hasConceptScore W2496759915C55493867 @default.
- W2496759915 hasConceptScore W2496759915C62649853 @default.
- W2496759915 hasConceptScore W2496759915C63479239 @default.
- W2496759915 hasConceptScore W2496759915C66938386 @default.