Matches in SemOpenAlex for { <https://semopenalex.org/work/W2496889969> ?p ?o ?g. }
- W2496889969 endingPage "1968" @default.
- W2496889969 startingPage "1957" @default.
- W2496889969 abstract "Compared to the categorical approach that represents affective states as several discrete classes (e.g., positive and negative), the dimensional approach represents affective states as continuous numerical values in multiple dimensions, such as the valence-arousal (VA) space, thus allowing for more fine-grained sentiment analysis. In building dimensional sentiment applications, affective lexicons with VA ratings are useful resources but are still very rare. Several semi-supervised methods such as the kernel method, linear regression, and the pagerank algorithm have been investigated to automatically determine the VA ratings of affective words from a set of semantically similar seed words. These methods suffer from two major limitations. First, they apply an equal weight to all seeds similar to an unseen word in predicting its VA ratings. Second, even similar seeds may have quite different ratings (or an inverse polarity) of valence/arousal to the unseen word, thus reducing prediction performance. To overcome these limitations, this study proposes a community-based weighted graph model that can select seeds which are both similar to and have similar ratings (or the same polarity) with each unseen word to form a community (subgraph) so that its VA ratings can be estimated from such high-quality seeds using a weighted propagation scheme. That is, seeds more similar to unseen words contribute more to the estimation process. Experimental results show that the proposed method yields better prediction performance for both English and Chinese datasets." @default.
- W2496889969 created "2016-08-23" @default.
- W2496889969 creator A5006464392 @default.
- W2496889969 creator A5018244700 @default.
- W2496889969 creator A5052937683 @default.
- W2496889969 creator A5085633092 @default.
- W2496889969 date "2016-11-01" @default.
- W2496889969 modified "2023-10-17" @default.
- W2496889969 title "Community-Based Weighted Graph Model for Valence-Arousal Prediction of Affective Words" @default.
- W2496889969 cites W1241017059 @default.
- W2496889969 cites W1615991656 @default.
- W2496889969 cites W1662133657 @default.
- W2496889969 cites W1771834303 @default.
- W2496889969 cites W1966797434 @default.
- W2496889969 cites W1981313612 @default.
- W2496889969 cites W1993618309 @default.
- W2496889969 cites W2017292107 @default.
- W2496889969 cites W2020470605 @default.
- W2496889969 cites W2023736093 @default.
- W2496889969 cites W2031998113 @default.
- W2496889969 cites W2033712093 @default.
- W2496889969 cites W2034995091 @default.
- W2496889969 cites W2044937105 @default.
- W2496889969 cites W2076786123 @default.
- W2496889969 cites W2077132576 @default.
- W2496889969 cites W2081580037 @default.
- W2496889969 cites W2084046180 @default.
- W2496889969 cites W2089173648 @default.
- W2496889969 cites W2110026675 @default.
- W2496889969 cites W2114524997 @default.
- W2496889969 cites W2117645142 @default.
- W2496889969 cites W2131681506 @default.
- W2496889969 cites W2149628368 @default.
- W2496889969 cites W2150193144 @default.
- W2496889969 cites W2151936673 @default.
- W2496889969 cites W2156191441 @default.
- W2496889969 cites W2161672051 @default.
- W2496889969 cites W2167557160 @default.
- W2496889969 cites W2250325507 @default.
- W2496889969 cites W2250539671 @default.
- W2496889969 cites W2251294039 @default.
- W2496889969 cites W2251645975 @default.
- W2496889969 cites W2253519362 @default.
- W2496889969 cites W4205184193 @default.
- W2496889969 cites W4211186029 @default.
- W2496889969 cites W4213060883 @default.
- W2496889969 doi "https://doi.org/10.1109/taslp.2016.2594287" @default.
- W2496889969 hasPublicationYear "2016" @default.
- W2496889969 type Work @default.
- W2496889969 sameAs 2496889969 @default.
- W2496889969 citedByCount "44" @default.
- W2496889969 countsByYear W24968899692016 @default.
- W2496889969 countsByYear W24968899692017 @default.
- W2496889969 countsByYear W24968899692018 @default.
- W2496889969 countsByYear W24968899692019 @default.
- W2496889969 countsByYear W24968899692020 @default.
- W2496889969 countsByYear W24968899692021 @default.
- W2496889969 countsByYear W24968899692022 @default.
- W2496889969 countsByYear W24968899692023 @default.
- W2496889969 crossrefType "journal-article" @default.
- W2496889969 hasAuthorship W2496889969A5006464392 @default.
- W2496889969 hasAuthorship W2496889969A5018244700 @default.
- W2496889969 hasAuthorship W2496889969A5052937683 @default.
- W2496889969 hasAuthorship W2496889969A5085633092 @default.
- W2496889969 hasConcept C119857082 @default.
- W2496889969 hasConcept C121332964 @default.
- W2496889969 hasConcept C132525143 @default.
- W2496889969 hasConcept C153180895 @default.
- W2496889969 hasConcept C154945302 @default.
- W2496889969 hasConcept C15744967 @default.
- W2496889969 hasConcept C168900304 @default.
- W2496889969 hasConcept C204321447 @default.
- W2496889969 hasConcept C36951298 @default.
- W2496889969 hasConcept C41008148 @default.
- W2496889969 hasConcept C5274069 @default.
- W2496889969 hasConcept C62520636 @default.
- W2496889969 hasConcept C66402592 @default.
- W2496889969 hasConcept C77805123 @default.
- W2496889969 hasConcept C80444323 @default.
- W2496889969 hasConceptScore W2496889969C119857082 @default.
- W2496889969 hasConceptScore W2496889969C121332964 @default.
- W2496889969 hasConceptScore W2496889969C132525143 @default.
- W2496889969 hasConceptScore W2496889969C153180895 @default.
- W2496889969 hasConceptScore W2496889969C154945302 @default.
- W2496889969 hasConceptScore W2496889969C15744967 @default.
- W2496889969 hasConceptScore W2496889969C168900304 @default.
- W2496889969 hasConceptScore W2496889969C204321447 @default.
- W2496889969 hasConceptScore W2496889969C36951298 @default.
- W2496889969 hasConceptScore W2496889969C41008148 @default.
- W2496889969 hasConceptScore W2496889969C5274069 @default.
- W2496889969 hasConceptScore W2496889969C62520636 @default.
- W2496889969 hasConceptScore W2496889969C66402592 @default.
- W2496889969 hasConceptScore W2496889969C77805123 @default.
- W2496889969 hasConceptScore W2496889969C80444323 @default.
- W2496889969 hasFunder F4320321001 @default.
- W2496889969 hasFunder F4320322795 @default.
- W2496889969 hasIssue "11" @default.
- W2496889969 hasLocation W24968899691 @default.