Matches in SemOpenAlex for { <https://semopenalex.org/work/W2497148462> ?p ?o ?g. }
- W2497148462 abstract "Evolution of plethora of e-commerce sites resulted in fierce competition among their providers. In order to acquire new and retain existing customers, various producers and market managers effectively employ online feedback analytics tools. Most of the online feedback analysis tools are built using sentiment analysis models. Sentiment analysis evolved in the last one and half decades for review mining process. An important sub-task of sentiment analysis called sentiment classification is used mainly to decide whether a written review is expressing either positive or negative sentiment towards a target entity. In order to have better sentiment classification accuracy, we proposed a hybrid deep learning architecture, which is a hybrid of a two layered Restricted Boltzmann Machine and a Probabilistic Neural Network. The proposed approach yielded better accuracy for five different datasets compared to the state-of-the-art." @default.
- W2497148462 created "2016-08-23" @default.
- W2497148462 creator A5073505371 @default.
- W2497148462 creator A5079087204 @default.
- W2497148462 creator A5084833080 @default.
- W2497148462 date "2016-03-01" @default.
- W2497148462 modified "2023-10-16" @default.
- W2497148462 title "A novel deep learning architecture for sentiment classification" @default.
- W2497148462 cites W1553979218 @default.
- W2497148462 cites W1964168965 @default.
- W2497148462 cites W1975428268 @default.
- W2497148462 cites W1985767166 @default.
- W2497148462 cites W2012070465 @default.
- W2497148462 cites W2044933868 @default.
- W2497148462 cites W2049434052 @default.
- W2497148462 cites W2062951208 @default.
- W2497148462 cites W2077563243 @default.
- W2497148462 cites W2086191371 @default.
- W2497148462 cites W2114524997 @default.
- W2497148462 cites W2116064496 @default.
- W2497148462 cites W2116410915 @default.
- W2497148462 cites W2121043186 @default.
- W2497148462 cites W2139451965 @default.
- W2497148462 cites W2308301896 @default.
- W2497148462 cites W4211186029 @default.
- W2497148462 doi "https://doi.org/10.1109/rait.2016.7507953" @default.
- W2497148462 hasPublicationYear "2016" @default.
- W2497148462 type Work @default.
- W2497148462 sameAs 2497148462 @default.
- W2497148462 citedByCount "15" @default.
- W2497148462 countsByYear W24971484622017 @default.
- W2497148462 countsByYear W24971484622018 @default.
- W2497148462 countsByYear W24971484622019 @default.
- W2497148462 countsByYear W24971484622020 @default.
- W2497148462 countsByYear W24971484622021 @default.
- W2497148462 countsByYear W24971484622022 @default.
- W2497148462 countsByYear W24971484622023 @default.
- W2497148462 crossrefType "proceedings-article" @default.
- W2497148462 hasAuthorship W2497148462A5073505371 @default.
- W2497148462 hasAuthorship W2497148462A5079087204 @default.
- W2497148462 hasAuthorship W2497148462A5084833080 @default.
- W2497148462 hasConcept C10138342 @default.
- W2497148462 hasConcept C108583219 @default.
- W2497148462 hasConcept C111919701 @default.
- W2497148462 hasConcept C119857082 @default.
- W2497148462 hasConcept C123657996 @default.
- W2497148462 hasConcept C127413603 @default.
- W2497148462 hasConcept C142362112 @default.
- W2497148462 hasConcept C153349607 @default.
- W2497148462 hasConcept C154945302 @default.
- W2497148462 hasConcept C162324750 @default.
- W2497148462 hasConcept C182306322 @default.
- W2497148462 hasConcept C18903297 @default.
- W2497148462 hasConcept C192576344 @default.
- W2497148462 hasConcept C199354608 @default.
- W2497148462 hasConcept C201995342 @default.
- W2497148462 hasConcept C2522767166 @default.
- W2497148462 hasConcept C2780451532 @default.
- W2497148462 hasConcept C41008148 @default.
- W2497148462 hasConcept C49937458 @default.
- W2497148462 hasConcept C66402592 @default.
- W2497148462 hasConcept C79158427 @default.
- W2497148462 hasConcept C86803240 @default.
- W2497148462 hasConcept C91306197 @default.
- W2497148462 hasConcept C98045186 @default.
- W2497148462 hasConceptScore W2497148462C10138342 @default.
- W2497148462 hasConceptScore W2497148462C108583219 @default.
- W2497148462 hasConceptScore W2497148462C111919701 @default.
- W2497148462 hasConceptScore W2497148462C119857082 @default.
- W2497148462 hasConceptScore W2497148462C123657996 @default.
- W2497148462 hasConceptScore W2497148462C127413603 @default.
- W2497148462 hasConceptScore W2497148462C142362112 @default.
- W2497148462 hasConceptScore W2497148462C153349607 @default.
- W2497148462 hasConceptScore W2497148462C154945302 @default.
- W2497148462 hasConceptScore W2497148462C162324750 @default.
- W2497148462 hasConceptScore W2497148462C182306322 @default.
- W2497148462 hasConceptScore W2497148462C18903297 @default.
- W2497148462 hasConceptScore W2497148462C192576344 @default.
- W2497148462 hasConceptScore W2497148462C199354608 @default.
- W2497148462 hasConceptScore W2497148462C201995342 @default.
- W2497148462 hasConceptScore W2497148462C2522767166 @default.
- W2497148462 hasConceptScore W2497148462C2780451532 @default.
- W2497148462 hasConceptScore W2497148462C41008148 @default.
- W2497148462 hasConceptScore W2497148462C49937458 @default.
- W2497148462 hasConceptScore W2497148462C66402592 @default.
- W2497148462 hasConceptScore W2497148462C79158427 @default.
- W2497148462 hasConceptScore W2497148462C86803240 @default.
- W2497148462 hasConceptScore W2497148462C91306197 @default.
- W2497148462 hasConceptScore W2497148462C98045186 @default.
- W2497148462 hasLocation W24971484621 @default.
- W2497148462 hasOpenAccess W2497148462 @default.
- W2497148462 hasPrimaryLocation W24971484621 @default.
- W2497148462 hasRelatedWork W2741836081 @default.
- W2497148462 hasRelatedWork W2886884189 @default.
- W2497148462 hasRelatedWork W2922457425 @default.
- W2497148462 hasRelatedWork W2952639376 @default.
- W2497148462 hasRelatedWork W2953332970 @default.
- W2497148462 hasRelatedWork W3105191672 @default.
- W2497148462 hasRelatedWork W3107474891 @default.
- W2497148462 hasRelatedWork W3129712087 @default.