Matches in SemOpenAlex for { <https://semopenalex.org/work/W2497776642> ?p ?o ?g. }
- W2497776642 abstract "OF DISSERTATION CONTINUOUS TIME MULTI-STATE MODELS FOR INTERVAL CENSORED DATA Continuous-time multi-state models are widely used in modeling longitudinal data of disease processes with multiple transient states, yet the analysis is complex when subjects are observed periodically, resulting in interval censored data. Recently, most studies focused on modeling the true disease progression as a discrete time stationary Markov chain, and only a few studies have been carried out regarding non-homogenous multi-state models in the presence of interval-censored data. In this dissertation, several likelihood-based methodologies were proposed to deal with interval censored data in multi-state models. Firstly, a continuous time version of a homogenous Markov multi-state model with backward transitions was proposed to handle uneven follow-up assessments or skipped visits, resulting in the interval censored data. Simulations were used to compare the performance of the proposed model with the traditional discrete time stationary Markov chain under different types of observation schemes. We applied these two methods to the well-known Nun study, a longitudinal study of 672 participants aged ≥ 75 years at baseline and followed longitudinally with up to ten cognitive assessments per participant. Secondly, we constructed a non-homogenous Markov model for this type of panel data. The baseline intensity was assumed to be Weibull distributed to accommodate the non-homogenous property. The proportional hazards method was used to incorporate risk factors into the transition intensities. Simulation studies showed that the Weibull assumption does not affect the accuracy of the parameter estimates for the risk factors. We applied our model to data from the BRAiNS study, a longitudinal cohort of 531 subjects each cognitively intact at baseline. Last, we presented a parametric method of fitting semi-Markov models based on Weibull transition intensities with interval censored cognitive data with death as a competing risk. We relaxed the Markov assumption and took interval censoring into account by integrating out all possible unobserved transitions. The proposed model also allowed for incorporating time-dependent covariates. We provided a goodness-of-fit assessment for the proposed model by the means of prevalence counts. To illustrate the methods, we applied our model to the BRAiNS study." @default.
- W2497776642 created "2016-08-23" @default.
- W2497776642 creator A5063400713 @default.
- W2497776642 date "2016-01-01" @default.
- W2497776642 modified "2023-09-23" @default.
- W2497776642 title "CONTINUOUS TIME MULTI-STATE MODELS FOR INTERVAL CENSORED DATA" @default.
- W2497776642 cites W1489904087 @default.
- W2497776642 cites W1919480245 @default.
- W2497776642 cites W194734945 @default.
- W2497776642 cites W1965315845 @default.
- W2497776642 cites W1965436432 @default.
- W2497776642 cites W1977519343 @default.
- W2497776642 cites W1983282949 @default.
- W2497776642 cites W1984514250 @default.
- W2497776642 cites W1994837497 @default.
- W2497776642 cites W2006632973 @default.
- W2497776642 cites W2011750461 @default.
- W2497776642 cites W2018324255 @default.
- W2497776642 cites W2023279111 @default.
- W2497776642 cites W2044868747 @default.
- W2497776642 cites W2047508756 @default.
- W2497776642 cites W2050638343 @default.
- W2497776642 cites W2054441825 @default.
- W2497776642 cites W2055452874 @default.
- W2497776642 cites W2067665433 @default.
- W2497776642 cites W2068852650 @default.
- W2497776642 cites W2088229392 @default.
- W2497776642 cites W2089698443 @default.
- W2497776642 cites W2095348292 @default.
- W2497776642 cites W2100376862 @default.
- W2497776642 cites W2110337627 @default.
- W2497776642 cites W2110768576 @default.
- W2497776642 cites W2111515458 @default.
- W2497776642 cites W2118477036 @default.
- W2497776642 cites W2121341819 @default.
- W2497776642 cites W2123362440 @default.
- W2497776642 cites W2124991621 @default.
- W2497776642 cites W2126588433 @default.
- W2497776642 cites W2128310537 @default.
- W2497776642 cites W2145310103 @default.
- W2497776642 cites W2150272490 @default.
- W2497776642 cites W2153121131 @default.
- W2497776642 cites W2169057037 @default.
- W2497776642 cites W2217794203 @default.
- W2497776642 cites W2319384619 @default.
- W2497776642 cites W2329109303 @default.
- W2497776642 cites W2416705584 @default.
- W2497776642 cites W2530714494 @default.
- W2497776642 cites W3148106702 @default.
- W2497776642 cites W478733 @default.
- W2497776642 doi "https://doi.org/10.13023/etd.2016.317" @default.
- W2497776642 hasPublicationYear "2016" @default.
- W2497776642 type Work @default.
- W2497776642 sameAs 2497776642 @default.
- W2497776642 citedByCount "0" @default.
- W2497776642 crossrefType "journal-article" @default.
- W2497776642 hasAuthorship W2497776642A5063400713 @default.
- W2497776642 hasConcept C105795698 @default.
- W2497776642 hasConcept C114614502 @default.
- W2497776642 hasConcept C149782125 @default.
- W2497776642 hasConcept C163836022 @default.
- W2497776642 hasConcept C173291955 @default.
- W2497776642 hasConcept C2778067643 @default.
- W2497776642 hasConcept C33923547 @default.
- W2497776642 hasConcept C41008148 @default.
- W2497776642 hasConcept C50382708 @default.
- W2497776642 hasConcept C98763669 @default.
- W2497776642 hasConceptScore W2497776642C105795698 @default.
- W2497776642 hasConceptScore W2497776642C114614502 @default.
- W2497776642 hasConceptScore W2497776642C149782125 @default.
- W2497776642 hasConceptScore W2497776642C163836022 @default.
- W2497776642 hasConceptScore W2497776642C173291955 @default.
- W2497776642 hasConceptScore W2497776642C2778067643 @default.
- W2497776642 hasConceptScore W2497776642C33923547 @default.
- W2497776642 hasConceptScore W2497776642C41008148 @default.
- W2497776642 hasConceptScore W2497776642C50382708 @default.
- W2497776642 hasConceptScore W2497776642C98763669 @default.
- W2497776642 hasLocation W24977766421 @default.
- W2497776642 hasOpenAccess W2497776642 @default.
- W2497776642 hasPrimaryLocation W24977766421 @default.
- W2497776642 hasRelatedWork W1477898308 @default.
- W2497776642 hasRelatedWork W1978431341 @default.
- W2497776642 hasRelatedWork W2036584065 @default.
- W2497776642 hasRelatedWork W2116437032 @default.
- W2497776642 hasRelatedWork W2145601722 @default.
- W2497776642 hasRelatedWork W2322136695 @default.
- W2497776642 hasRelatedWork W2463289146 @default.
- W2497776642 hasRelatedWork W2489876217 @default.
- W2497776642 hasRelatedWork W2581406447 @default.
- W2497776642 hasRelatedWork W2585210588 @default.
- W2497776642 hasRelatedWork W2612817190 @default.
- W2497776642 hasRelatedWork W2613430942 @default.
- W2497776642 hasRelatedWork W2914779467 @default.
- W2497776642 hasRelatedWork W2950538335 @default.
- W2497776642 hasRelatedWork W2951500476 @default.
- W2497776642 hasRelatedWork W2965954110 @default.
- W2497776642 hasRelatedWork W3009328162 @default.
- W2497776642 hasRelatedWork W3181519101 @default.
- W2497776642 hasRelatedWork W64495627 @default.
- W2497776642 hasRelatedWork W2188240421 @default.