Matches in SemOpenAlex for { <https://semopenalex.org/work/W2498073538> ?p ?o ?g. }
- W2498073538 endingPage "385" @default.
- W2498073538 startingPage "373" @default.
- W2498073538 abstract "In present paper we develop a model of monthly river flow rate using artificial neural networks, based on the assumption that air temperature and precipitation predetermine the flow rate dynamics. In order to create a reliable prediction model, we used monthly observations made at Lim river basin in southwestern Serbia from 1950 to 2012, since results of this analysis could be significant for hydro-energy production at ``Potpeć and ``Brodarevo hydropower plants. Analysis was conducted using multilayer feed-forward perceptron with Levenberg–Marquardt learning algorithm and appropriate number of hidden neurons which provide the most reliable prediction accuracy. Analysis of derived models with different number of hidden nodes indicate that models are insensitive to the number of hidden units. Model with eight hidden nodes was chosen as the most reliable one, providing highest prediction accuracy (the highest values of determination coefficient and Nash–Sutcliffe coefficient). Predictive power of the developed model was tested against the recordings made in period 1991–2012, providing satisfying prediction accuracy. Moreover, Monte-Carlo simulation showed that prediction accuracy of developed models is robust against expected experimental error, confirming that derived models provide reliable predictions of flow rates, which could be used for water management plans and strategies. We also propose two potential applications of derived model: for predicting the future flow rate using the predefined climate models, and for forecasting the hydroenergy production, on the basis of the linear dependence of the observed flow rate and previously produced electric power. These application are verified for the regional climate model EBU-POM, for the period 2013–2100, and using the data on electric power production at hydro powerplant ``Potpeć." @default.
- W2498073538 created "2016-08-23" @default.
- W2498073538 creator A5041765753 @default.
- W2498073538 creator A5041973555 @default.
- W2498073538 creator A5056580260 @default.
- W2498073538 date "2016-12-01" @default.
- W2498073538 modified "2023-10-04" @default.
- W2498073538 title "Hydrological flow rate estimation using artificial neural networks: Model development and potential applications" @default.
- W2498073538 cites W1965826577 @default.
- W2498073538 cites W1972459796 @default.
- W2498073538 cites W1978390232 @default.
- W2498073538 cites W1986656491 @default.
- W2498073538 cites W1992649778 @default.
- W2498073538 cites W1998676299 @default.
- W2498073538 cites W2006960330 @default.
- W2498073538 cites W2008678369 @default.
- W2498073538 cites W2015465318 @default.
- W2498073538 cites W2015546745 @default.
- W2498073538 cites W2016989768 @default.
- W2498073538 cites W2019451733 @default.
- W2498073538 cites W2026302091 @default.
- W2498073538 cites W2035134507 @default.
- W2498073538 cites W2036245535 @default.
- W2498073538 cites W2050020793 @default.
- W2498073538 cites W2059393002 @default.
- W2498073538 cites W2068882021 @default.
- W2498073538 cites W2072641542 @default.
- W2498073538 cites W2075701907 @default.
- W2498073538 cites W2087617252 @default.
- W2498073538 cites W2093240489 @default.
- W2498073538 cites W2101706954 @default.
- W2498073538 cites W2101927907 @default.
- W2498073538 cites W2106532629 @default.
- W2498073538 cites W2128036137 @default.
- W2498073538 cites W2132104490 @default.
- W2498073538 cites W2144729270 @default.
- W2498073538 cites W2148975016 @default.
- W2498073538 cites W2154810642 @default.
- W2498073538 cites W2180317557 @default.
- W2498073538 cites W2204679745 @default.
- W2498073538 cites W2335044830 @default.
- W2498073538 cites W563287015 @default.
- W2498073538 doi "https://doi.org/10.1016/j.amc.2016.07.014" @default.
- W2498073538 hasPublicationYear "2016" @default.
- W2498073538 type Work @default.
- W2498073538 sameAs 2498073538 @default.
- W2498073538 citedByCount "7" @default.
- W2498073538 countsByYear W24980735382017 @default.
- W2498073538 countsByYear W24980735382018 @default.
- W2498073538 countsByYear W24980735382019 @default.
- W2498073538 countsByYear W24980735382021 @default.
- W2498073538 crossrefType "journal-article" @default.
- W2498073538 hasAuthorship W2498073538A5041765753 @default.
- W2498073538 hasAuthorship W2498073538A5041973555 @default.
- W2498073538 hasAuthorship W2498073538A5056580260 @default.
- W2498073538 hasConcept C105795698 @default.
- W2498073538 hasConcept C119599485 @default.
- W2498073538 hasConcept C119857082 @default.
- W2498073538 hasConcept C121332964 @default.
- W2498073538 hasConcept C127413603 @default.
- W2498073538 hasConcept C128990827 @default.
- W2498073538 hasConcept C154945302 @default.
- W2498073538 hasConcept C172120300 @default.
- W2498073538 hasConcept C179717631 @default.
- W2498073538 hasConcept C19499675 @default.
- W2498073538 hasConcept C2524010 @default.
- W2498073538 hasConcept C33923547 @default.
- W2498073538 hasConcept C38349280 @default.
- W2498073538 hasConcept C40675005 @default.
- W2498073538 hasConcept C41008148 @default.
- W2498073538 hasConcept C50644808 @default.
- W2498073538 hasConcept C60908668 @default.
- W2498073538 hasConcept C62520636 @default.
- W2498073538 hasConceptScore W2498073538C105795698 @default.
- W2498073538 hasConceptScore W2498073538C119599485 @default.
- W2498073538 hasConceptScore W2498073538C119857082 @default.
- W2498073538 hasConceptScore W2498073538C121332964 @default.
- W2498073538 hasConceptScore W2498073538C127413603 @default.
- W2498073538 hasConceptScore W2498073538C128990827 @default.
- W2498073538 hasConceptScore W2498073538C154945302 @default.
- W2498073538 hasConceptScore W2498073538C172120300 @default.
- W2498073538 hasConceptScore W2498073538C179717631 @default.
- W2498073538 hasConceptScore W2498073538C19499675 @default.
- W2498073538 hasConceptScore W2498073538C2524010 @default.
- W2498073538 hasConceptScore W2498073538C33923547 @default.
- W2498073538 hasConceptScore W2498073538C38349280 @default.
- W2498073538 hasConceptScore W2498073538C40675005 @default.
- W2498073538 hasConceptScore W2498073538C41008148 @default.
- W2498073538 hasConceptScore W2498073538C50644808 @default.
- W2498073538 hasConceptScore W2498073538C60908668 @default.
- W2498073538 hasConceptScore W2498073538C62520636 @default.
- W2498073538 hasFunder F4320322729 @default.
- W2498073538 hasLocation W24980735381 @default.
- W2498073538 hasOpenAccess W2498073538 @default.
- W2498073538 hasPrimaryLocation W24980735381 @default.
- W2498073538 hasRelatedWork W1501774291 @default.
- W2498073538 hasRelatedWork W1987886632 @default.
- W2498073538 hasRelatedWork W2025643150 @default.