Matches in SemOpenAlex for { <https://semopenalex.org/work/W2498667582> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2498667582 endingPage "1471" @default.
- W2498667582 startingPage "1467" @default.
- W2498667582 abstract "Sparse representation is an effective model for high-level feature extraction, and the dictionary is critical, since it can provide a sparse and discriminative feature for image classification. However, the traditional sparse model with ℓ <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>1</sub> - norm is unstable and ignores spatial context dependence. Furthermore, the traditional off-line dictionary learning is less efficient. In this letter, a high-level feature extraction approach is proposed, in which structured sparsity priors are imposed on the sparse representation to exploit the context dependence and an incremental structured dictionary learning method is proposed to exploit the inherent structures of a dictionary. The experiment results on unsupervised synthetic aperture radar imagery classification show that the structured priors improve classification performance and the proposed algorithm is more efficient in dictionary learning compared with existing works." @default.
- W2498667582 created "2016-08-23" @default.
- W2498667582 creator A5028225823 @default.
- W2498667582 creator A5050630882 @default.
- W2498667582 creator A5065027008 @default.
- W2498667582 creator A5077622519 @default.
- W2498667582 date "2016-10-01" @default.
- W2498667582 modified "2023-10-15" @default.
- W2498667582 title "Unsupervised High-Level Feature Extraction of SAR Imagery With Structured Sparsity Priors and Incremental Dictionary Learning" @default.
- W2498667582 cites W1972281563 @default.
- W2498667582 cites W1979158807 @default.
- W2498667582 cites W1998943499 @default.
- W2498667582 cites W2005876975 @default.
- W2498667582 cites W2015695644 @default.
- W2498667582 cites W2027922120 @default.
- W2498667582 cites W2063043162 @default.
- W2498667582 cites W2063870433 @default.
- W2498667582 cites W2069959554 @default.
- W2498667582 cites W2097915756 @default.
- W2498667582 cites W2100556411 @default.
- W2498667582 cites W2113606819 @default.
- W2498667582 cites W2129812935 @default.
- W2498667582 cites W2137937911 @default.
- W2498667582 cites W2151169541 @default.
- W2498667582 cites W2160547390 @default.
- W2498667582 cites W2275123856 @default.
- W2498667582 doi "https://doi.org/10.1109/lgrs.2016.2592503" @default.
- W2498667582 hasPublicationYear "2016" @default.
- W2498667582 type Work @default.
- W2498667582 sameAs 2498667582 @default.
- W2498667582 citedByCount "9" @default.
- W2498667582 countsByYear W24986675822017 @default.
- W2498667582 countsByYear W24986675822018 @default.
- W2498667582 countsByYear W24986675822019 @default.
- W2498667582 countsByYear W24986675822020 @default.
- W2498667582 countsByYear W24986675822021 @default.
- W2498667582 crossrefType "journal-article" @default.
- W2498667582 hasAuthorship W2498667582A5028225823 @default.
- W2498667582 hasAuthorship W2498667582A5050630882 @default.
- W2498667582 hasAuthorship W2498667582A5065027008 @default.
- W2498667582 hasAuthorship W2498667582A5077622519 @default.
- W2498667582 hasConcept C107673813 @default.
- W2498667582 hasConcept C124066611 @default.
- W2498667582 hasConcept C138885662 @default.
- W2498667582 hasConcept C151730666 @default.
- W2498667582 hasConcept C153180895 @default.
- W2498667582 hasConcept C154771677 @default.
- W2498667582 hasConcept C154945302 @default.
- W2498667582 hasConcept C177769412 @default.
- W2498667582 hasConcept C2776401178 @default.
- W2498667582 hasConcept C2779343474 @default.
- W2498667582 hasConcept C41008148 @default.
- W2498667582 hasConcept C41895202 @default.
- W2498667582 hasConcept C52622490 @default.
- W2498667582 hasConcept C59404180 @default.
- W2498667582 hasConcept C86803240 @default.
- W2498667582 hasConcept C97931131 @default.
- W2498667582 hasConceptScore W2498667582C107673813 @default.
- W2498667582 hasConceptScore W2498667582C124066611 @default.
- W2498667582 hasConceptScore W2498667582C138885662 @default.
- W2498667582 hasConceptScore W2498667582C151730666 @default.
- W2498667582 hasConceptScore W2498667582C153180895 @default.
- W2498667582 hasConceptScore W2498667582C154771677 @default.
- W2498667582 hasConceptScore W2498667582C154945302 @default.
- W2498667582 hasConceptScore W2498667582C177769412 @default.
- W2498667582 hasConceptScore W2498667582C2776401178 @default.
- W2498667582 hasConceptScore W2498667582C2779343474 @default.
- W2498667582 hasConceptScore W2498667582C41008148 @default.
- W2498667582 hasConceptScore W2498667582C41895202 @default.
- W2498667582 hasConceptScore W2498667582C52622490 @default.
- W2498667582 hasConceptScore W2498667582C59404180 @default.
- W2498667582 hasConceptScore W2498667582C86803240 @default.
- W2498667582 hasConceptScore W2498667582C97931131 @default.
- W2498667582 hasFunder F4320321001 @default.
- W2498667582 hasFunder F4320335777 @default.
- W2498667582 hasIssue "10" @default.
- W2498667582 hasLocation W24986675821 @default.
- W2498667582 hasOpenAccess W2498667582 @default.
- W2498667582 hasPrimaryLocation W24986675821 @default.
- W2498667582 hasRelatedWork W1982405594 @default.
- W2498667582 hasRelatedWork W2073114111 @default.
- W2498667582 hasRelatedWork W2157785665 @default.
- W2498667582 hasRelatedWork W2285052147 @default.
- W2498667582 hasRelatedWork W2546942002 @default.
- W2498667582 hasRelatedWork W2806866760 @default.
- W2498667582 hasRelatedWork W2944661354 @default.
- W2498667582 hasRelatedWork W2970216048 @default.
- W2498667582 hasRelatedWork W2998168123 @default.
- W2498667582 hasRelatedWork W4287995534 @default.
- W2498667582 hasVolume "13" @default.
- W2498667582 isParatext "false" @default.
- W2498667582 isRetracted "false" @default.
- W2498667582 magId "2498667582" @default.
- W2498667582 workType "article" @default.