Matches in SemOpenAlex for { <https://semopenalex.org/work/W2498918354> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W2498918354 abstract "This work develops a framework accompanied by experimental validation for interesting event detection in real-world outdoor image sequences. The two most important components of this thesis are a family of algorithms for robust target tracking in real-world outdoor scenes and a statistical learning approach for learning the different classes of events in a scene. Dynamic visual events can be likened to natural language sentences given the sequential nature and the diversity in their occurrence. However, the application of natural language parsing techniques such as context-free grammars to video events is non-trivial due to the difficulty in learning of such grammars from image-based data. Unlike well-defined natural language sentences, interpretation of image data is ambiguous, more so in the case of complex environments. Until now, learning is restricted to statistical parameter estimation of models with prespecified structure. This work addresses the problem of learning video event grammars by employing semi-supervised learning. As opposed to starting from a grammar corpus, this work introduces a novel method for incrementally augmenting the grammar from the unlabeled data through bootstrapping from a small labeled data-set and an entropy minimization-based regularization. This is more realistic in generic environments. In addition, robust classification is attained through a normalized edit distance measure applied to event parsing. Experimental results for event detection in real-world scenes for a traffic: intersection monitoring application are presented. A similar problem with event detection from image sequences is the problem of obtaining robust target localization. Tracking has been a longstanding research problem with several solutions. Non-parametric estimators are by far the best known estimators that try to attain robust tracking through sampling at the price of immense computational over-head, thereby limiting the number of tracked targets. This work addresses the problem of tracking in unknown environments with large number of targets using realistic though flexible assumptions by combining multiple cues, multiple motion models, data association, and adaptive cue combination to attain a near real-time tracking solution. Extensive experimental validation of the tracking and the developed data association methods are presented." @default.
- W2498918354 created "2016-08-23" @default.
- W2498918354 creator A5019166226 @default.
- W2498918354 creator A5045359714 @default.
- W2498918354 creator A5071796726 @default.
- W2498918354 date "2006-01-01" @default.
- W2498918354 modified "2023-09-28" @default.
- W2498918354 title "Learning to extract interesting events from outdoor image sequences" @default.
- W2498918354 hasPublicationYear "2006" @default.
- W2498918354 type Work @default.
- W2498918354 sameAs 2498918354 @default.
- W2498918354 citedByCount "0" @default.
- W2498918354 crossrefType "journal-article" @default.
- W2498918354 hasAuthorship W2498918354A5019166226 @default.
- W2498918354 hasAuthorship W2498918354A5045359714 @default.
- W2498918354 hasAuthorship W2498918354A5071796726 @default.
- W2498918354 hasConcept C106301342 @default.
- W2498918354 hasConcept C119857082 @default.
- W2498918354 hasConcept C121332964 @default.
- W2498918354 hasConcept C153180895 @default.
- W2498918354 hasConcept C154945302 @default.
- W2498918354 hasConcept C186644900 @default.
- W2498918354 hasConcept C204321447 @default.
- W2498918354 hasConcept C2779662365 @default.
- W2498918354 hasConcept C41008148 @default.
- W2498918354 hasConcept C62520636 @default.
- W2498918354 hasConceptScore W2498918354C106301342 @default.
- W2498918354 hasConceptScore W2498918354C119857082 @default.
- W2498918354 hasConceptScore W2498918354C121332964 @default.
- W2498918354 hasConceptScore W2498918354C153180895 @default.
- W2498918354 hasConceptScore W2498918354C154945302 @default.
- W2498918354 hasConceptScore W2498918354C186644900 @default.
- W2498918354 hasConceptScore W2498918354C204321447 @default.
- W2498918354 hasConceptScore W2498918354C2779662365 @default.
- W2498918354 hasConceptScore W2498918354C41008148 @default.
- W2498918354 hasConceptScore W2498918354C62520636 @default.
- W2498918354 hasLocation W24989183541 @default.
- W2498918354 hasOpenAccess W2498918354 @default.
- W2498918354 hasPrimaryLocation W24989183541 @default.
- W2498918354 hasRelatedWork W103163845 @default.
- W2498918354 hasRelatedWork W1159553073 @default.
- W2498918354 hasRelatedWork W1913989993 @default.
- W2498918354 hasRelatedWork W2071522380 @default.
- W2498918354 hasRelatedWork W2109799729 @default.
- W2498918354 hasRelatedWork W2162803893 @default.
- W2498918354 hasRelatedWork W2167735259 @default.
- W2498918354 hasRelatedWork W2467379829 @default.
- W2498918354 hasRelatedWork W2579486733 @default.
- W2498918354 hasRelatedWork W2900099771 @default.
- W2498918354 hasRelatedWork W2944659840 @default.
- W2498918354 hasRelatedWork W2949138511 @default.
- W2498918354 hasRelatedWork W2981705647 @default.
- W2498918354 hasRelatedWork W3035161894 @default.
- W2498918354 hasRelatedWork W3050584442 @default.
- W2498918354 hasRelatedWork W3158810259 @default.
- W2498918354 hasRelatedWork W3159252911 @default.
- W2498918354 hasRelatedWork W3173649118 @default.
- W2498918354 hasRelatedWork W3192607066 @default.
- W2498918354 hasRelatedWork W192767310 @default.
- W2498918354 isParatext "false" @default.
- W2498918354 isRetracted "false" @default.
- W2498918354 magId "2498918354" @default.
- W2498918354 workType "article" @default.