Matches in SemOpenAlex for { <https://semopenalex.org/work/W2499598526> ?p ?o ?g. }
- W2499598526 endingPage "127" @default.
- W2499598526 startingPage "101" @default.
- W2499598526 abstract "Ways of improving the accuracy and efficiency of automatic speech recognition (ASR) systems have been a long term goal of researchers to develop the natural language man machine communication interface. In widely used statistical framework of ASR, feature extraction technique is used at the front-end for speech signal parameterization, and hidden Markov model (HMM) is used at the back-end for pattern classification. This chapter reviews classical and recent approaches of Markov modeling, and also presents an empirical study of few well known methods in the context of Hindi speech recognition system. Various performance issues such as number of Gaussian mixtures, tied states, and feature reduction procedures are also analyzed for medium size vocabulary. The experimental results show that using advanced techniques of acoustic models, more than 90% accuracy can be achieved. The recent advanced models outperform the conventional methods and fit for HCI applications." @default.
- W2499598526 created "2016-08-23" @default.
- W2499598526 creator A5008241621 @default.
- W2499598526 creator A5030665333 @default.
- W2499598526 date "2012-01-01" @default.
- W2499598526 modified "2023-10-18" @default.
- W2499598526 title "Recent Trends in Speech Recognition Systems" @default.
- W2499598526 cites W127709214 @default.
- W2499598526 cites W173010698 @default.
- W2499598526 cites W1768248362 @default.
- W2499598526 cites W1965248225 @default.
- W2499598526 cites W1967325250 @default.
- W2499598526 cites W2008554732 @default.
- W2499598526 cites W2009106392 @default.
- W2499598526 cites W2020144989 @default.
- W2499598526 cites W2022554507 @default.
- W2499598526 cites W2032210463 @default.
- W2499598526 cites W2040118574 @default.
- W2499598526 cites W2042079494 @default.
- W2499598526 cites W2043934928 @default.
- W2499598526 cites W2047227474 @default.
- W2499598526 cites W2047497400 @default.
- W2499598526 cites W2052440526 @default.
- W2499598526 cites W2064218608 @default.
- W2499598526 cites W2075546197 @default.
- W2499598526 cites W2075888317 @default.
- W2499598526 cites W2076618452 @default.
- W2499598526 cites W2077574412 @default.
- W2499598526 cites W2080400971 @default.
- W2499598526 cites W2083393647 @default.
- W2499598526 cites W2090861223 @default.
- W2499598526 cites W2092958002 @default.
- W2499598526 cites W2096145771 @default.
- W2499598526 cites W2097207027 @default.
- W2499598526 cites W2097268427 @default.
- W2499598526 cites W2097355209 @default.
- W2499598526 cites W2101859041 @default.
- W2499598526 cites W2105986561 @default.
- W2499598526 cites W2118504934 @default.
- W2499598526 cites W2121464381 @default.
- W2499598526 cites W2123523384 @default.
- W2499598526 cites W2125838338 @default.
- W2499598526 cites W2128653836 @default.
- W2499598526 cites W2135070170 @default.
- W2499598526 cites W2137075158 @default.
- W2499598526 cites W2140539590 @default.
- W2499598526 cites W2141969549 @default.
- W2499598526 cites W2142384583 @default.
- W2499598526 cites W2143343256 @default.
- W2499598526 cites W2146871184 @default.
- W2499598526 cites W2148154194 @default.
- W2499598526 cites W2152051032 @default.
- W2499598526 cites W2161167754 @default.
- W2499598526 cites W2167763959 @default.
- W2499598526 cites W39068652 @default.
- W2499598526 cites W4205130185 @default.
- W2499598526 cites W4210849719 @default.
- W2499598526 cites W53977603 @default.
- W2499598526 cites W89925159 @default.
- W2499598526 doi "https://doi.org/10.4018/978-1-4666-0954-9.ch006" @default.
- W2499598526 hasPublicationYear "2012" @default.
- W2499598526 type Work @default.
- W2499598526 sameAs 2499598526 @default.
- W2499598526 citedByCount "5" @default.
- W2499598526 countsByYear W24995985262013 @default.
- W2499598526 countsByYear W24995985262014 @default.
- W2499598526 countsByYear W24995985262016 @default.
- W2499598526 countsByYear W24995985262017 @default.
- W2499598526 crossrefType "book-chapter" @default.
- W2499598526 hasAuthorship W2499598526A5008241621 @default.
- W2499598526 hasAuthorship W2499598526A5030665333 @default.
- W2499598526 hasConcept C119857082 @default.
- W2499598526 hasConcept C138885662 @default.
- W2499598526 hasConcept C151730666 @default.
- W2499598526 hasConcept C153180895 @default.
- W2499598526 hasConcept C154945302 @default.
- W2499598526 hasConcept C163836022 @default.
- W2499598526 hasConcept C204321447 @default.
- W2499598526 hasConcept C23224414 @default.
- W2499598526 hasConcept C2776401178 @default.
- W2499598526 hasConcept C2777601683 @default.
- W2499598526 hasConcept C2779343474 @default.
- W2499598526 hasConcept C28490314 @default.
- W2499598526 hasConcept C41008148 @default.
- W2499598526 hasConcept C41895202 @default.
- W2499598526 hasConcept C519982507 @default.
- W2499598526 hasConcept C52622490 @default.
- W2499598526 hasConcept C86803240 @default.
- W2499598526 hasConcept C98763669 @default.
- W2499598526 hasConceptScore W2499598526C119857082 @default.
- W2499598526 hasConceptScore W2499598526C138885662 @default.
- W2499598526 hasConceptScore W2499598526C151730666 @default.
- W2499598526 hasConceptScore W2499598526C153180895 @default.
- W2499598526 hasConceptScore W2499598526C154945302 @default.
- W2499598526 hasConceptScore W2499598526C163836022 @default.
- W2499598526 hasConceptScore W2499598526C204321447 @default.
- W2499598526 hasConceptScore W2499598526C23224414 @default.
- W2499598526 hasConceptScore W2499598526C2776401178 @default.