Matches in SemOpenAlex for { <https://semopenalex.org/work/W2499689869> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2499689869 endingPage "924" @default.
- W2499689869 startingPage "917" @default.
- W2499689869 abstract "Abstract One of the novel technologies for natural gas dehydration and natural gas dew-point conditioning is supersonic separation, which has remarkable features, including compact and maintenance-free design. Due to its complex design and the difficulty of experimental analysis, researchers tend to conduct numerical modeling for behavior investigation of the nozzle focusing on shockwave which is the main phenomena inside the nozzle. The present NN-model outperforms a selection of data and proposes an efficient NN-based algorithm for shockwave position estimation as the key nozzle geometry parameter. Data for the shockwave location was collected from a wide range of results from the literature and then a neural network based self-organizing map was adapted to the dataset. This created a classified dataset and the use of unreal weight and repeated experimental results from different research were avoided. A neural network was employed for modeling the shockwave location through the nozzle using a better quality dataset. Additionally, the one-dimensional inviscid theory was utilized in the recursive approach for comparison to the main proposed model. Simulation results presented in this research reveal the effectiveness of the proposed neural network technique for supersonic nozzle modeling and make it possible to determine the shockwave location from the nozzle pressure boundary conditions. The results showed that the supersonic nozzle separation have capability to be used in both low-pressure applications and high pressure ones. The dimensionless length for shockwave location is predicted in the range of 0.82–0.92 for the former and 0.72 to 0.95 for the later, depending on pressure recovery ratio." @default.
- W2499689869 created "2016-08-23" @default.
- W2499689869 creator A5029332531 @default.
- W2499689869 creator A5075937816 @default.
- W2499689869 creator A5086332718 @default.
- W2499689869 date "2016-08-01" @default.
- W2499689869 modified "2023-09-27" @default.
- W2499689869 title "Prediction of shockwave location in supersonic nozzle separation using self-organizing map classification and artificial neural network modeling" @default.
- W2499689869 cites W1979735212 @default.
- W2499689869 cites W2015762998 @default.
- W2499689869 cites W2016922867 @default.
- W2499689869 cites W2019052586 @default.
- W2499689869 cites W2041481277 @default.
- W2499689869 cites W2043689344 @default.
- W2499689869 cites W2051216975 @default.
- W2499689869 cites W2069341759 @default.
- W2499689869 cites W2076948637 @default.
- W2499689869 cites W2079795515 @default.
- W2499689869 cites W2085560676 @default.
- W2499689869 cites W2088940758 @default.
- W2499689869 cites W2095029328 @default.
- W2499689869 cites W2136250054 @default.
- W2499689869 cites W2150944559 @default.
- W2499689869 cites W2207963357 @default.
- W2499689869 cites W2232732673 @default.
- W2499689869 doi "https://doi.org/10.1016/j.jngse.2016.07.061" @default.
- W2499689869 hasPublicationYear "2016" @default.
- W2499689869 type Work @default.
- W2499689869 sameAs 2499689869 @default.
- W2499689869 citedByCount "20" @default.
- W2499689869 countsByYear W24996898692016 @default.
- W2499689869 countsByYear W24996898692017 @default.
- W2499689869 countsByYear W24996898692018 @default.
- W2499689869 countsByYear W24996898692019 @default.
- W2499689869 countsByYear W24996898692020 @default.
- W2499689869 countsByYear W24996898692021 @default.
- W2499689869 countsByYear W24996898692022 @default.
- W2499689869 countsByYear W24996898692023 @default.
- W2499689869 crossrefType "journal-article" @default.
- W2499689869 hasAuthorship W2499689869A5029332531 @default.
- W2499689869 hasAuthorship W2499689869A5075937816 @default.
- W2499689869 hasAuthorship W2499689869A5086332718 @default.
- W2499689869 hasConcept C111168008 @default.
- W2499689869 hasConcept C119857082 @default.
- W2499689869 hasConcept C127413603 @default.
- W2499689869 hasConcept C146978453 @default.
- W2499689869 hasConcept C153180895 @default.
- W2499689869 hasConcept C154945302 @default.
- W2499689869 hasConcept C205991772 @default.
- W2499689869 hasConcept C2776061190 @default.
- W2499689869 hasConcept C41008148 @default.
- W2499689869 hasConcept C50644808 @default.
- W2499689869 hasConcept C56200935 @default.
- W2499689869 hasConceptScore W2499689869C111168008 @default.
- W2499689869 hasConceptScore W2499689869C119857082 @default.
- W2499689869 hasConceptScore W2499689869C127413603 @default.
- W2499689869 hasConceptScore W2499689869C146978453 @default.
- W2499689869 hasConceptScore W2499689869C153180895 @default.
- W2499689869 hasConceptScore W2499689869C154945302 @default.
- W2499689869 hasConceptScore W2499689869C205991772 @default.
- W2499689869 hasConceptScore W2499689869C2776061190 @default.
- W2499689869 hasConceptScore W2499689869C41008148 @default.
- W2499689869 hasConceptScore W2499689869C50644808 @default.
- W2499689869 hasConceptScore W2499689869C56200935 @default.
- W2499689869 hasLocation W24996898691 @default.
- W2499689869 hasOpenAccess W2499689869 @default.
- W2499689869 hasPrimaryLocation W24996898691 @default.
- W2499689869 hasRelatedWork W1485085181 @default.
- W2499689869 hasRelatedWork W2035463678 @default.
- W2499689869 hasRelatedWork W2096356999 @default.
- W2499689869 hasRelatedWork W2126139300 @default.
- W2499689869 hasRelatedWork W2151697000 @default.
- W2499689869 hasRelatedWork W2168555063 @default.
- W2499689869 hasRelatedWork W2774265604 @default.
- W2499689869 hasRelatedWork W2899084033 @default.
- W2499689869 hasRelatedWork W2474749047 @default.
- W2499689869 hasRelatedWork W2559504630 @default.
- W2499689869 hasVolume "34" @default.
- W2499689869 isParatext "false" @default.
- W2499689869 isRetracted "false" @default.
- W2499689869 magId "2499689869" @default.
- W2499689869 workType "article" @default.