Matches in SemOpenAlex for { <https://semopenalex.org/work/W2500160368> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2500160368 abstract "Despite the recent surge in high-throughput sequencing of cancer genomes, the challenge of translating these data into clinically actionable information remains. One promising approach involves the identification of tumor-specific mutant antigens (‘TSMAs’ or neoantigens) via massively parallel sequencing and analysis of matched cancer and normal samples that can be used to create personalized vaccines. In the past, this effort has primarily focused on targeting selection of ‘shared’ tumor antigens, found across many patients. Here, we advocate a more ‘personalized’ approach. These unique antigenic markers or TSMAs arise from numerous genetic changes, acquired somatically that are present exclusively in tumor (mutant) and not in normal (wild- type) cells. Vaccines incorporate these short, antigen-derived peptides (called epitopes) that aim to enhance the immune system9s anti-tumor activity by selectively increasing the frequency of anti-tumor specific CD8+ T-cell antigens, and hence expand the ability of the immune system to recognize and destroy cancerous cells. Selecting the best/most immunogenic epitopes from a large number of mutations is an important challenge, in particular in cases of high mutational load such as melanoma and lung cancer. To address this need, we have developed an in silico based sequence analysis method for identification and subsequent refinement of patient-specific antigens for use in personalized vaccines. This flexible and streamlined computational workflow for identification of personalized variant antigens by cancer sequencing (pVAC-Seq) integrates tumor mutation and expression data (DNA- and RNA-Seq) to shortlist candidate neoantigen peptides for a personalized vaccine. Harnessing existing class I prediction algorithms, high-affinity neoantigens over varying peptide lengths are evaluated. To demonstrate the workings of pVAC-Seq, we applied it to four metastatic melanoma patients, the clinical results for three of whom were described previously. These patients were enrolled in a phase 1 vaccine clinical trial employing autologous, functionally mature, interleukin (IL)-12p70-producing dendritic cells (DC). Since melanoma patients harbor hundreds of mutations, it can be challenging to filter down and target the best set of potentially immunogenic neoantigens for vaccine design. By implementing the methods developed in pVAC-Seq, we were able to rapidly streamline the screening and identification of a smaller number of potentially immunogenic neoepitopes within the landscape of all neoepitopes. Citation Format: Jasreet Hundal, Beatriz M. Carreno, Allegra A. Petti, Gerald P. Linette, Obi L. Griffith, Malachi Griffith, Elaine R. Mardis. pVAC-Seq: A genome-guided in silico approach to identify tumor neoantigens for personalized immunotherapy. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 3995." @default.
- W2500160368 created "2016-08-23" @default.
- W2500160368 creator A5000653097 @default.
- W2500160368 creator A5001076376 @default.
- W2500160368 creator A5013666106 @default.
- W2500160368 creator A5052629830 @default.
- W2500160368 creator A5054642128 @default.
- W2500160368 creator A5076793020 @default.
- W2500160368 date "2016-07-15" @default.
- W2500160368 modified "2023-09-26" @default.
- W2500160368 title "Abstract 3995: pVAC-Seq: A genome-guidedin silicoapproach to identify tumor neoantigens for personalized immunotherapy" @default.
- W2500160368 doi "https://doi.org/10.1158/1538-7445.am2016-3995" @default.
- W2500160368 hasPublicationYear "2016" @default.
- W2500160368 type Work @default.
- W2500160368 sameAs 2500160368 @default.
- W2500160368 citedByCount "3" @default.
- W2500160368 countsByYear W25001603682019 @default.
- W2500160368 countsByYear W25001603682023 @default.
- W2500160368 crossrefType "proceedings-article" @default.
- W2500160368 hasAuthorship W2500160368A5000653097 @default.
- W2500160368 hasAuthorship W2500160368A5001076376 @default.
- W2500160368 hasAuthorship W2500160368A5013666106 @default.
- W2500160368 hasAuthorship W2500160368A5052629830 @default.
- W2500160368 hasAuthorship W2500160368A5054642128 @default.
- W2500160368 hasAuthorship W2500160368A5076793020 @default.
- W2500160368 hasConcept C104317684 @default.
- W2500160368 hasConcept C121608353 @default.
- W2500160368 hasConcept C147483822 @default.
- W2500160368 hasConcept C195616568 @default.
- W2500160368 hasConcept C2775905019 @default.
- W2500160368 hasConcept C2777701055 @default.
- W2500160368 hasConcept C2780674031 @default.
- W2500160368 hasConcept C54355233 @default.
- W2500160368 hasConcept C70721500 @default.
- W2500160368 hasConcept C86803240 @default.
- W2500160368 hasConceptScore W2500160368C104317684 @default.
- W2500160368 hasConceptScore W2500160368C121608353 @default.
- W2500160368 hasConceptScore W2500160368C147483822 @default.
- W2500160368 hasConceptScore W2500160368C195616568 @default.
- W2500160368 hasConceptScore W2500160368C2775905019 @default.
- W2500160368 hasConceptScore W2500160368C2777701055 @default.
- W2500160368 hasConceptScore W2500160368C2780674031 @default.
- W2500160368 hasConceptScore W2500160368C54355233 @default.
- W2500160368 hasConceptScore W2500160368C70721500 @default.
- W2500160368 hasConceptScore W2500160368C86803240 @default.
- W2500160368 hasLocation W25001603681 @default.
- W2500160368 hasOpenAccess W2500160368 @default.
- W2500160368 hasPrimaryLocation W25001603681 @default.
- W2500160368 hasRelatedWork W1527445381 @default.
- W2500160368 hasRelatedWork W2037240393 @default.
- W2500160368 hasRelatedWork W2128077666 @default.
- W2500160368 hasRelatedWork W2547844717 @default.
- W2500160368 hasRelatedWork W2792102808 @default.
- W2500160368 hasRelatedWork W2914216709 @default.
- W2500160368 hasRelatedWork W2945830776 @default.
- W2500160368 hasRelatedWork W2949232403 @default.
- W2500160368 hasRelatedWork W2954714935 @default.
- W2500160368 hasRelatedWork W2968937276 @default.
- W2500160368 hasRelatedWork W2995472522 @default.
- W2500160368 hasRelatedWork W2997256142 @default.
- W2500160368 hasRelatedWork W3009887768 @default.
- W2500160368 hasRelatedWork W3035023948 @default.
- W2500160368 hasRelatedWork W3072849820 @default.
- W2500160368 hasRelatedWork W3099648387 @default.
- W2500160368 hasRelatedWork W3159962684 @default.
- W2500160368 hasRelatedWork W3172063795 @default.
- W2500160368 hasRelatedWork W3196430253 @default.
- W2500160368 hasRelatedWork W3200784184 @default.
- W2500160368 isParatext "false" @default.
- W2500160368 isRetracted "false" @default.
- W2500160368 magId "2500160368" @default.
- W2500160368 workType "article" @default.