Matches in SemOpenAlex for { <https://semopenalex.org/work/W2500310423> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2500310423 endingPage "30" @default.
- W2500310423 startingPage "23" @default.
- W2500310423 abstract "It is quite common that machine learning approaches reach high accuracy forecast rates in imbalanced datasets. However, the results in the category with few instances are usually low. This paper seeks to improve the results obtained applying different techniques (such as bagging, boosting or random forests) with the inclusion of cost matrices. We propose applying the actual costs incurred by the company for misclassification of instances as a cost matrix. This approach, along with an economic analysis of the different solutions, makes it possible to incorporate a business perspective in the decision making process. The approach is tested on a publicly available dataset. In our example, the best ratings are obtained by combining the cost matrix with random forests. However, our analysis shows that the best technical solution is not always the best economical solution available. A company cannot always implement the optimal solution, but has to adopt a solution constrained by its social, institutional and economic context. Once an economic analysis is carried out, it seems the final decision of the company will depend on its economic situation and its institutional policy." @default.
- W2500310423 created "2016-08-23" @default.
- W2500310423 creator A5005843838 @default.
- W2500310423 creator A5076839898 @default.
- W2500310423 date "2016-06-27" @default.
- W2500310423 modified "2023-09-23" @default.
- W2500310423 title "Weighting machine learning solutions by economic and institutional context for decision making" @default.
- W2500310423 doi "https://doi.org/10.4995/carma2016.2015.4245" @default.
- W2500310423 hasPublicationYear "2016" @default.
- W2500310423 type Work @default.
- W2500310423 sameAs 2500310423 @default.
- W2500310423 citedByCount "0" @default.
- W2500310423 crossrefType "journal-article" @default.
- W2500310423 hasAuthorship W2500310423A5005843838 @default.
- W2500310423 hasAuthorship W2500310423A5076839898 @default.
- W2500310423 hasConcept C111919701 @default.
- W2500310423 hasConcept C119857082 @default.
- W2500310423 hasConcept C126838900 @default.
- W2500310423 hasConcept C12713177 @default.
- W2500310423 hasConcept C151730666 @default.
- W2500310423 hasConcept C154945302 @default.
- W2500310423 hasConcept C169258074 @default.
- W2500310423 hasConcept C183115368 @default.
- W2500310423 hasConcept C2779343474 @default.
- W2500310423 hasConcept C33923547 @default.
- W2500310423 hasConcept C41008148 @default.
- W2500310423 hasConcept C42475967 @default.
- W2500310423 hasConcept C46686674 @default.
- W2500310423 hasConcept C71924100 @default.
- W2500310423 hasConcept C86803240 @default.
- W2500310423 hasConcept C98045186 @default.
- W2500310423 hasConceptScore W2500310423C111919701 @default.
- W2500310423 hasConceptScore W2500310423C119857082 @default.
- W2500310423 hasConceptScore W2500310423C126838900 @default.
- W2500310423 hasConceptScore W2500310423C12713177 @default.
- W2500310423 hasConceptScore W2500310423C151730666 @default.
- W2500310423 hasConceptScore W2500310423C154945302 @default.
- W2500310423 hasConceptScore W2500310423C169258074 @default.
- W2500310423 hasConceptScore W2500310423C183115368 @default.
- W2500310423 hasConceptScore W2500310423C2779343474 @default.
- W2500310423 hasConceptScore W2500310423C33923547 @default.
- W2500310423 hasConceptScore W2500310423C41008148 @default.
- W2500310423 hasConceptScore W2500310423C42475967 @default.
- W2500310423 hasConceptScore W2500310423C46686674 @default.
- W2500310423 hasConceptScore W2500310423C71924100 @default.
- W2500310423 hasConceptScore W2500310423C86803240 @default.
- W2500310423 hasConceptScore W2500310423C98045186 @default.
- W2500310423 hasLocation W25003104231 @default.
- W2500310423 hasOpenAccess W2500310423 @default.
- W2500310423 hasPrimaryLocation W25003104231 @default.
- W2500310423 hasRelatedWork W1517688278 @default.
- W2500310423 hasRelatedWork W1969374512 @default.
- W2500310423 hasRelatedWork W1981714490 @default.
- W2500310423 hasRelatedWork W2024779218 @default.
- W2500310423 hasRelatedWork W2028712296 @default.
- W2500310423 hasRelatedWork W2043790099 @default.
- W2500310423 hasRelatedWork W2049030451 @default.
- W2500310423 hasRelatedWork W2049910949 @default.
- W2500310423 hasRelatedWork W2056262314 @default.
- W2500310423 hasRelatedWork W2064152189 @default.
- W2500310423 hasRelatedWork W2067280680 @default.
- W2500310423 hasRelatedWork W2074187959 @default.
- W2500310423 hasRelatedWork W2078304433 @default.
- W2500310423 hasRelatedWork W2080204613 @default.
- W2500310423 hasRelatedWork W2085622363 @default.
- W2500310423 hasRelatedWork W2145961632 @default.
- W2500310423 hasRelatedWork W2188944385 @default.
- W2500310423 hasRelatedWork W2495380060 @default.
- W2500310423 hasRelatedWork W2588498958 @default.
- W2500310423 hasRelatedWork W60859142 @default.
- W2500310423 isParatext "false" @default.
- W2500310423 isRetracted "false" @default.
- W2500310423 magId "2500310423" @default.
- W2500310423 workType "article" @default.