Matches in SemOpenAlex for { <https://semopenalex.org/work/W2500973384> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2500973384 endingPage "343" @default.
- W2500973384 startingPage "321" @default.
- W2500973384 abstract "When comparing the performance of health care providers, it is important that the effect of such factors that have an unwanted effect on the performance indicator (eg. mortality) is ruled out. In register based studies randomization is out of question. We develop a risk adjustment model for hip fracture mortality in Finland by using logistic regression. The model is used to study the impact of the length of the register follow-up period on adjusting the performance indicator for a set of comorbidities. The comorbidities are congestive heart failure, cancer and diabetes. We also introduce an implementation of the minimum description length (MDL) principle for model selection in logistic regression. This is done by using the normalized maximum likelihood (NML) technique. The computational burden becomes too heavy to apply the usual NML criterion and therefore a technique based on the idea of sequentially normalized maximum likelihood (sNML) is introduced. The sNML criterion can be evaluated efficiently also for large models with large amounts of data. The results given by sNML are then compared to the corresponding results given by the traditional AIC and BIC model selection criteria. All three comorbidities have clearly an effect on hip fracture mortality. The results indicate that for congestive heart failure all available medical history should be used, while for cancer it is enough to use only records from half a year before the fracture. For diabetes the choice of time period is not as clear, but using records from three years before the fracture seems to be a reasonable choice." @default.
- W2500973384 created "2016-08-23" @default.
- W2500973384 creator A5008130391 @default.
- W2500973384 creator A5028674161 @default.
- W2500973384 creator A5029142827 @default.
- W2500973384 creator A5049284253 @default.
- W2500973384 date "2021-03-20" @default.
- W2500973384 modified "2023-09-26" @default.
- W2500973384 title "Variable Selection by sNML Criterion in Logistic Regression with an Application to a Risk-Adjustment Model for Hip Fracture Mortality" @default.
- W2500973384 cites W1549018912 @default.
- W2500973384 cites W1565240145 @default.
- W2500973384 cites W1970502168 @default.
- W2500973384 cites W1973948212 @default.
- W2500973384 cites W1978519316 @default.
- W2500973384 cites W1979102891 @default.
- W2500973384 cites W2006585716 @default.
- W2500973384 cites W2034230784 @default.
- W2500973384 cites W2038912822 @default.
- W2500973384 cites W2062900220 @default.
- W2500973384 cites W2068782468 @default.
- W2500973384 cites W2102098892 @default.
- W2500973384 cites W2009968536 @default.
- W2500973384 doi "https://doi.org/10.6339/jds.2012.10(2).739" @default.
- W2500973384 hasPublicationYear "2021" @default.
- W2500973384 type Work @default.
- W2500973384 sameAs 2500973384 @default.
- W2500973384 citedByCount "0" @default.
- W2500973384 crossrefType "journal-article" @default.
- W2500973384 hasAuthorship W2500973384A5008130391 @default.
- W2500973384 hasAuthorship W2500973384A5028674161 @default.
- W2500973384 hasAuthorship W2500973384A5029142827 @default.
- W2500973384 hasAuthorship W2500973384A5049284253 @default.
- W2500973384 hasConcept C105795698 @default.
- W2500973384 hasConcept C126322002 @default.
- W2500973384 hasConcept C149782125 @default.
- W2500973384 hasConcept C151956035 @default.
- W2500973384 hasConcept C154945302 @default.
- W2500973384 hasConcept C2776541429 @default.
- W2500973384 hasConcept C2778885795 @default.
- W2500973384 hasConcept C33923547 @default.
- W2500973384 hasConcept C41008148 @default.
- W2500973384 hasConcept C71924100 @default.
- W2500973384 hasConcept C81917197 @default.
- W2500973384 hasConcept C93959086 @default.
- W2500973384 hasConceptScore W2500973384C105795698 @default.
- W2500973384 hasConceptScore W2500973384C126322002 @default.
- W2500973384 hasConceptScore W2500973384C149782125 @default.
- W2500973384 hasConceptScore W2500973384C151956035 @default.
- W2500973384 hasConceptScore W2500973384C154945302 @default.
- W2500973384 hasConceptScore W2500973384C2776541429 @default.
- W2500973384 hasConceptScore W2500973384C2778885795 @default.
- W2500973384 hasConceptScore W2500973384C33923547 @default.
- W2500973384 hasConceptScore W2500973384C41008148 @default.
- W2500973384 hasConceptScore W2500973384C71924100 @default.
- W2500973384 hasConceptScore W2500973384C81917197 @default.
- W2500973384 hasConceptScore W2500973384C93959086 @default.
- W2500973384 hasIssue "2" @default.
- W2500973384 hasLocation W25009733841 @default.
- W2500973384 hasOpenAccess W2500973384 @default.
- W2500973384 hasPrimaryLocation W25009733841 @default.
- W2500973384 hasRelatedWork W1554165042 @default.
- W2500973384 hasRelatedWork W1911333099 @default.
- W2500973384 hasRelatedWork W1978613457 @default.
- W2500973384 hasRelatedWork W1979629197 @default.
- W2500973384 hasRelatedWork W2000789302 @default.
- W2500973384 hasRelatedWork W2018144913 @default.
- W2500973384 hasRelatedWork W2022264347 @default.
- W2500973384 hasRelatedWork W2024321899 @default.
- W2500973384 hasRelatedWork W2073870862 @default.
- W2500973384 hasRelatedWork W2075037368 @default.
- W2500973384 hasRelatedWork W2091602204 @default.
- W2500973384 hasRelatedWork W2091708345 @default.
- W2500973384 hasRelatedWork W2101347185 @default.
- W2500973384 hasRelatedWork W2142029723 @default.
- W2500973384 hasRelatedWork W2161909751 @default.
- W2500973384 hasRelatedWork W2198080401 @default.
- W2500973384 hasRelatedWork W2315485763 @default.
- W2500973384 hasRelatedWork W2410457663 @default.
- W2500973384 hasRelatedWork W3161846938 @default.
- W2500973384 hasRelatedWork W2775709789 @default.
- W2500973384 hasVolume "10" @default.
- W2500973384 isParatext "false" @default.
- W2500973384 isRetracted "false" @default.
- W2500973384 magId "2500973384" @default.
- W2500973384 workType "article" @default.