Matches in SemOpenAlex for { <https://semopenalex.org/work/W2500976890> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2500976890 abstract "The development of accurate flood prediction model could reduce number of fatalities by assisting local government in decision making. In this paper, three well-known machine learning algorithms, including Support Vector Machine, Decision Tree, and Lasso, are compared in terms of flood prediction accuracy. The selected algorithms are applied to learn flood prediction models for six U.S. Geological Survey gauges in North Texas. Three data sets from different sources had been used to learn flood prediction models. The data sets include Water level time series from gauges, spatio-temporal precipitation from National Weather Service’s Weather Surveillance Radar-1988 Doppler, and hydrological data from Hydrology Laboratory-Distributed Hydrologic Model. Although Support Vector Machine usually performs well in many applications, the results suggest that Lasso is the most appropriate for flood prediction while Support Vector Machine performs the worst." @default.
- W2500976890 created "2016-08-23" @default.
- W2500976890 creator A5006223022 @default.
- W2500976890 creator A5015128288 @default.
- W2500976890 creator A5025495745 @default.
- W2500976890 creator A5067290650 @default.
- W2500976890 date "2016-01-01" @default.
- W2500976890 modified "2023-09-26" @default.
- W2500976890 title "Comparative Presentation of Machine Learning Algorithms in Flood Prediction Using Spatio-Temporal Data" @default.
- W2500976890 cites W2064090829 @default.
- W2500976890 cites W2100085182 @default.
- W2500976890 cites W2119862467 @default.
- W2500976890 cites W2128420091 @default.
- W2500976890 cites W2142534172 @default.
- W2500976890 cites W4294541781 @default.
- W2500976890 doi "https://doi.org/10.1007/978-3-662-49831-6_105" @default.
- W2500976890 hasPublicationYear "2016" @default.
- W2500976890 type Work @default.
- W2500976890 sameAs 2500976890 @default.
- W2500976890 citedByCount "2" @default.
- W2500976890 countsByYear W25009768902018 @default.
- W2500976890 countsByYear W25009768902020 @default.
- W2500976890 crossrefType "book-chapter" @default.
- W2500976890 hasAuthorship W2500976890A5006223022 @default.
- W2500976890 hasAuthorship W2500976890A5015128288 @default.
- W2500976890 hasAuthorship W2500976890A5025495745 @default.
- W2500976890 hasAuthorship W2500976890A5067290650 @default.
- W2500976890 hasConcept C11413529 @default.
- W2500976890 hasConcept C119857082 @default.
- W2500976890 hasConcept C12267149 @default.
- W2500976890 hasConcept C124101348 @default.
- W2500976890 hasConcept C136764020 @default.
- W2500976890 hasConcept C151406439 @default.
- W2500976890 hasConcept C154945302 @default.
- W2500976890 hasConcept C166957645 @default.
- W2500976890 hasConcept C169258074 @default.
- W2500976890 hasConcept C205649164 @default.
- W2500976890 hasConcept C37616216 @default.
- W2500976890 hasConcept C41008148 @default.
- W2500976890 hasConcept C554190296 @default.
- W2500976890 hasConcept C67186912 @default.
- W2500976890 hasConcept C74256435 @default.
- W2500976890 hasConcept C76155785 @default.
- W2500976890 hasConcept C77088390 @default.
- W2500976890 hasConcept C84525736 @default.
- W2500976890 hasConceptScore W2500976890C11413529 @default.
- W2500976890 hasConceptScore W2500976890C119857082 @default.
- W2500976890 hasConceptScore W2500976890C12267149 @default.
- W2500976890 hasConceptScore W2500976890C124101348 @default.
- W2500976890 hasConceptScore W2500976890C136764020 @default.
- W2500976890 hasConceptScore W2500976890C151406439 @default.
- W2500976890 hasConceptScore W2500976890C154945302 @default.
- W2500976890 hasConceptScore W2500976890C166957645 @default.
- W2500976890 hasConceptScore W2500976890C169258074 @default.
- W2500976890 hasConceptScore W2500976890C205649164 @default.
- W2500976890 hasConceptScore W2500976890C37616216 @default.
- W2500976890 hasConceptScore W2500976890C41008148 @default.
- W2500976890 hasConceptScore W2500976890C554190296 @default.
- W2500976890 hasConceptScore W2500976890C67186912 @default.
- W2500976890 hasConceptScore W2500976890C74256435 @default.
- W2500976890 hasConceptScore W2500976890C76155785 @default.
- W2500976890 hasConceptScore W2500976890C77088390 @default.
- W2500976890 hasConceptScore W2500976890C84525736 @default.
- W2500976890 hasLocation W25009768901 @default.
- W2500976890 hasOpenAccess W2500976890 @default.
- W2500976890 hasPrimaryLocation W25009768901 @default.
- W2500976890 hasRelatedWork W1557872632 @default.
- W2500976890 hasRelatedWork W1965154695 @default.
- W2500976890 hasRelatedWork W1993934953 @default.
- W2500976890 hasRelatedWork W2138017226 @default.
- W2500976890 hasRelatedWork W2391212719 @default.
- W2500976890 hasRelatedWork W2411363438 @default.
- W2500976890 hasRelatedWork W2551191081 @default.
- W2500976890 hasRelatedWork W2606294390 @default.
- W2500976890 hasRelatedWork W2769597746 @default.
- W2500976890 hasRelatedWork W2973047752 @default.
- W2500976890 hasRelatedWork W2998629020 @default.
- W2500976890 hasRelatedWork W3012241580 @default.
- W2500976890 hasRelatedWork W3035276697 @default.
- W2500976890 hasRelatedWork W3042234746 @default.
- W2500976890 hasRelatedWork W3044320885 @default.
- W2500976890 hasRelatedWork W3166721759 @default.
- W2500976890 hasRelatedWork W3183393935 @default.
- W2500976890 hasRelatedWork W3214244691 @default.
- W2500976890 hasRelatedWork W3064279510 @default.
- W2500976890 hasRelatedWork W3109806245 @default.
- W2500976890 isParatext "false" @default.
- W2500976890 isRetracted "false" @default.
- W2500976890 magId "2500976890" @default.
- W2500976890 workType "book-chapter" @default.