Matches in SemOpenAlex for { <https://semopenalex.org/work/W2501122430> ?p ?o ?g. }
- W2501122430 endingPage "544" @default.
- W2501122430 startingPage "533" @default.
- W2501122430 abstract "Physical activity (PA) is essential to prevent and to treat a variety of chronic diseases. The automated detection and quantification of PA over time empowers lifestyle interventions, facilitating reliable exercise tracking and data-driven counseling.We propose and compare various combinations of machine learning (ML) schemes for the automatic classification of PA from multi-modal data, simultaneously captured by a biaxial accelerometer and a heart rate (HR) monitor. Intensity levels (low / moderate / vigorous) were recognized, as well as for vigorous exercise, its modality (sustained aerobic / resistance / mixed). In total, 178.63 h of data about PA intensity (65.55 % low / 18.96 % moderate / 15.49 % vigorous) and 17.00 h about modality were collected in two experiments: one in free-living conditions, another in a fitness center under controlled protocols. The structure used for automatic classification comprised: a) definition of 42 time-domain signal features, b) dimensionality reduction, c) data clustering, and d) temporal filtering to exploit time redundancy by means of a Hidden Markov Model (HMM). Four dimensionality reduction techniques and four clustering algorithms were studied. In order to cope with class imbalance in the dataset, a custom performance metric was defined to aggregate recognition accuracy, precision and recall.The best scheme, which comprised a projection through Linear Discriminant Analysis (LDA) and k-means clustering, was evaluated in leave-one-subject-out cross-validation; notably outperforming the standard industry procedures for PA intensity classification: score 84.65 %, versus up to 63.60 %. Errors tended to be brief and to appear around transients.The application of ML techniques for pattern identification and temporal filtering allowed to merge accelerometry and HR data in a solid manner, and achieved markedly better recognition performances than the standard methods for PA intensity estimation." @default.
- W2501122430 created "2016-08-23" @default.
- W2501122430 creator A5003610345 @default.
- W2501122430 creator A5067363285 @default.
- W2501122430 creator A5068384514 @default.
- W2501122430 date "2016-01-01" @default.
- W2501122430 modified "2023-09-26" @default.
- W2501122430 title "Automatic Identification of Physical Activity Intensity and Modality from the Fusion of Accelerometry and Heart Rate Data" @default.
- W2501122430 cites W1222922404 @default.
- W2501122430 cites W1232458005 @default.
- W2501122430 cites W1551782597 @default.
- W2501122430 cites W1574332072 @default.
- W2501122430 cites W1897824230 @default.
- W2501122430 cites W1968668112 @default.
- W2501122430 cites W1970675431 @default.
- W2501122430 cites W1979061557 @default.
- W2501122430 cites W1990776473 @default.
- W2501122430 cites W1992554210 @default.
- W2501122430 cites W1993761347 @default.
- W2501122430 cites W1996593243 @default.
- W2501122430 cites W2005823174 @default.
- W2501122430 cites W2011781303 @default.
- W2501122430 cites W2012451507 @default.
- W2501122430 cites W2017337590 @default.
- W2501122430 cites W2025870581 @default.
- W2501122430 cites W2030401894 @default.
- W2501122430 cites W2033727719 @default.
- W2501122430 cites W2037569144 @default.
- W2501122430 cites W2041545551 @default.
- W2501122430 cites W2042283868 @default.
- W2501122430 cites W2047387209 @default.
- W2501122430 cites W2050998072 @default.
- W2501122430 cites W2055621179 @default.
- W2501122430 cites W2060975364 @default.
- W2501122430 cites W2066847812 @default.
- W2501122430 cites W2070759722 @default.
- W2501122430 cites W2072517764 @default.
- W2501122430 cites W2075526594 @default.
- W2501122430 cites W2084448175 @default.
- W2501122430 cites W2084779848 @default.
- W2501122430 cites W2092111356 @default.
- W2501122430 cites W2092126505 @default.
- W2501122430 cites W2098352383 @default.
- W2501122430 cites W2101077754 @default.
- W2501122430 cites W2104813100 @default.
- W2501122430 cites W2105046342 @default.
- W2501122430 cites W2107856583 @default.
- W2501122430 cites W2109507061 @default.
- W2501122430 cites W2117794119 @default.
- W2501122430 cites W2117855475 @default.
- W2501122430 cites W2125212922 @default.
- W2501122430 cites W2125838338 @default.
- W2501122430 cites W2127127580 @default.
- W2501122430 cites W2131987814 @default.
- W2501122430 cites W2133674562 @default.
- W2501122430 cites W2137093338 @default.
- W2501122430 cites W2144852094 @default.
- W2501122430 cites W2154053567 @default.
- W2501122430 cites W2164410653 @default.
- W2501122430 cites W2168457867 @default.
- W2501122430 cites W2170724010 @default.
- W2501122430 cites W2170931123 @default.
- W2501122430 cites W2318313152 @default.
- W2501122430 cites W2498923140 @default.
- W2501122430 cites W4294183730 @default.
- W2501122430 doi "https://doi.org/10.3414/me15-01-0130" @default.
- W2501122430 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27492483" @default.
- W2501122430 hasPublicationYear "2016" @default.
- W2501122430 type Work @default.
- W2501122430 sameAs 2501122430 @default.
- W2501122430 citedByCount "4" @default.
- W2501122430 countsByYear W25011224302020 @default.
- W2501122430 countsByYear W25011224302021 @default.
- W2501122430 countsByYear W25011224302022 @default.
- W2501122430 crossrefType "journal-article" @default.
- W2501122430 hasAuthorship W2501122430A5003610345 @default.
- W2501122430 hasAuthorship W2501122430A5067363285 @default.
- W2501122430 hasAuthorship W2501122430A5068384514 @default.
- W2501122430 hasConcept C111919701 @default.
- W2501122430 hasConcept C119857082 @default.
- W2501122430 hasConcept C124101348 @default.
- W2501122430 hasConcept C153180895 @default.
- W2501122430 hasConcept C154945302 @default.
- W2501122430 hasConcept C23224414 @default.
- W2501122430 hasConcept C2780226545 @default.
- W2501122430 hasConcept C41008148 @default.
- W2501122430 hasConcept C69738355 @default.
- W2501122430 hasConcept C70518039 @default.
- W2501122430 hasConcept C73555534 @default.
- W2501122430 hasConcept C89805583 @default.
- W2501122430 hasConceptScore W2501122430C111919701 @default.
- W2501122430 hasConceptScore W2501122430C119857082 @default.
- W2501122430 hasConceptScore W2501122430C124101348 @default.
- W2501122430 hasConceptScore W2501122430C153180895 @default.
- W2501122430 hasConceptScore W2501122430C154945302 @default.
- W2501122430 hasConceptScore W2501122430C23224414 @default.
- W2501122430 hasConceptScore W2501122430C2780226545 @default.
- W2501122430 hasConceptScore W2501122430C41008148 @default.