Matches in SemOpenAlex for { <https://semopenalex.org/work/W2501500329> ?p ?o ?g. }
- W2501500329 abstract "Many important real-world applications of machine learning, statistical physics, constraint programming and information theory can be formulated using graphical models that involve determinism and cycles. Accurate and efficient inference and training of such graphical models remains a key challenge. Markov logic networks (MLNs) have recently emerged as a popular framework for expressing a number of problems which exhibit these properties. While loopy belief propagation (LBP) can be an effective solution in some cases; unfortunately, when both determinism and cycles are present, LBP frequently fails to converge or converges to inaccurate results. As such, sampling based algorithms have been found to be more effective and are more popular for general inference tasks in MLNs. In this paper, we introduce Generalized arc-consistency Expectation Maximization Message-Passing (GEM-MP), a novel message-passing approach to inference in an extended factor graph that combines constraint programming techniques with variational methods. We focus our experiments on Markov logic and Ising models but the method is applicable to graphical models in general. In contrast to LBP, GEM-MP formulates the message-passing structure as steps of variational expectation maximization. Moreover, in the algorithm we leverage the local structures in the factor graph by using generalized arc consistency when performing a variational mean-field approximation. Thus each such update increases a lower bound on the model evidence. Our experiments on Ising grids, entity resolution and link prediction problems demonstrate the accuracy and convergence of GEM-MP over existing state-of-the-art inference algorithms such as MC-SAT, LBP, and Gibbs sampling, as well as convergent message passing algorithms such as the concave---convex procedure, residual BP, and the L2-convex method." @default.
- W2501500329 created "2016-08-23" @default.
- W2501500329 creator A5016924854 @default.
- W2501500329 creator A5018000450 @default.
- W2501500329 creator A5075885606 @default.
- W2501500329 date "2016-07-22" @default.
- W2501500329 modified "2023-09-23" @default.
- W2501500329 title "Improving probabilistic inference in graphical models with determinism and cycles" @default.
- W2501500329 cites W1535439311 @default.
- W2501500329 cites W153733639 @default.
- W2501500329 cites W1585529040 @default.
- W2501500329 cites W1593793857 @default.
- W2501500329 cites W1649159094 @default.
- W2501500329 cites W1965417459 @default.
- W2501500329 cites W1977970897 @default.
- W2501500329 cites W2047408445 @default.
- W2501500329 cites W2101982583 @default.
- W2501500329 cites W2106131716 @default.
- W2501500329 cites W2118696796 @default.
- W2501500329 cites W2129031807 @default.
- W2501500329 cites W2130697955 @default.
- W2501500329 cites W2135968022 @default.
- W2501500329 cites W2136801552 @default.
- W2501500329 cites W2137813581 @default.
- W2501500329 cites W2155616412 @default.
- W2501500329 cites W2160988325 @default.
- W2501500329 cites W2164524038 @default.
- W2501500329 cites W2169307919 @default.
- W2501500329 cites W2169415915 @default.
- W2501500329 cites W2169650188 @default.
- W2501500329 cites W2171472464 @default.
- W2501500329 cites W2175127871 @default.
- W2501500329 cites W3105784841 @default.
- W2501500329 doi "https://doi.org/10.1007/s10994-016-5585-5" @default.
- W2501500329 hasPublicationYear "2016" @default.
- W2501500329 type Work @default.
- W2501500329 sameAs 2501500329 @default.
- W2501500329 citedByCount "2" @default.
- W2501500329 countsByYear W25015003292019 @default.
- W2501500329 countsByYear W25015003292020 @default.
- W2501500329 crossrefType "journal-article" @default.
- W2501500329 hasAuthorship W2501500329A5016924854 @default.
- W2501500329 hasAuthorship W2501500329A5018000450 @default.
- W2501500329 hasAuthorship W2501500329A5075885606 @default.
- W2501500329 hasBestOaLocation W25015003291 @default.
- W2501500329 hasConcept C107673813 @default.
- W2501500329 hasConcept C11413529 @default.
- W2501500329 hasConcept C119857082 @default.
- W2501500329 hasConcept C126255220 @default.
- W2501500329 hasConcept C137105694 @default.
- W2501500329 hasConcept C152948882 @default.
- W2501500329 hasConcept C153083717 @default.
- W2501500329 hasConcept C154945302 @default.
- W2501500329 hasConcept C155846161 @default.
- W2501500329 hasConcept C158424031 @default.
- W2501500329 hasConcept C159246509 @default.
- W2501500329 hasConcept C199360897 @default.
- W2501500329 hasConcept C2776214188 @default.
- W2501500329 hasConcept C2777472644 @default.
- W2501500329 hasConcept C33923547 @default.
- W2501500329 hasConcept C41008148 @default.
- W2501500329 hasConcept C44616089 @default.
- W2501500329 hasConcept C49937458 @default.
- W2501500329 hasConcept C57273362 @default.
- W2501500329 hasConcept C80444323 @default.
- W2501500329 hasConcept C854659 @default.
- W2501500329 hasConceptScore W2501500329C107673813 @default.
- W2501500329 hasConceptScore W2501500329C11413529 @default.
- W2501500329 hasConceptScore W2501500329C119857082 @default.
- W2501500329 hasConceptScore W2501500329C126255220 @default.
- W2501500329 hasConceptScore W2501500329C137105694 @default.
- W2501500329 hasConceptScore W2501500329C152948882 @default.
- W2501500329 hasConceptScore W2501500329C153083717 @default.
- W2501500329 hasConceptScore W2501500329C154945302 @default.
- W2501500329 hasConceptScore W2501500329C155846161 @default.
- W2501500329 hasConceptScore W2501500329C158424031 @default.
- W2501500329 hasConceptScore W2501500329C159246509 @default.
- W2501500329 hasConceptScore W2501500329C199360897 @default.
- W2501500329 hasConceptScore W2501500329C2776214188 @default.
- W2501500329 hasConceptScore W2501500329C2777472644 @default.
- W2501500329 hasConceptScore W2501500329C33923547 @default.
- W2501500329 hasConceptScore W2501500329C41008148 @default.
- W2501500329 hasConceptScore W2501500329C44616089 @default.
- W2501500329 hasConceptScore W2501500329C49937458 @default.
- W2501500329 hasConceptScore W2501500329C57273362 @default.
- W2501500329 hasConceptScore W2501500329C80444323 @default.
- W2501500329 hasConceptScore W2501500329C854659 @default.
- W2501500329 hasLocation W25015003291 @default.
- W2501500329 hasOpenAccess W2501500329 @default.
- W2501500329 hasPrimaryLocation W25015003291 @default.
- W2501500329 hasRelatedWork W1484863582 @default.
- W2501500329 hasRelatedWork W1500829410 @default.
- W2501500329 hasRelatedWork W1561981064 @default.
- W2501500329 hasRelatedWork W1631483227 @default.
- W2501500329 hasRelatedWork W174961330 @default.
- W2501500329 hasRelatedWork W1858116990 @default.
- W2501500329 hasRelatedWork W2000334459 @default.
- W2501500329 hasRelatedWork W2068176821 @default.
- W2501500329 hasRelatedWork W2127856808 @default.
- W2501500329 hasRelatedWork W2171016142 @default.