Matches in SemOpenAlex for { <https://semopenalex.org/work/W2502051256> ?p ?o ?g. }
- W2502051256 endingPage "2744" @default.
- W2502051256 startingPage "2725" @default.
- W2502051256 abstract "Abstract When information on multiple genotypes evaluated in multiple environments is recorded, a multi-environment single trait model for assessing genotype × environment interaction (G × E) is usually employed. Comprehensive models that simultaneously take into account the correlated traits and trait × genotype × environment interaction (T × G × E) are lacking. In this research, we propose a Bayesian model for analyzing multiple traits and multiple environments for whole-genome prediction (WGP) model. For this model, we used Half-t priors on each standard deviation term and uniform priors on each correlation of the covariance matrix. These priors were not informative and led to posterior inferences that were insensitive to the choice of hyper-parameters. We also developed a computationally efficient Markov Chain Monte Carlo (MCMC) under the above priors, which allowed us to obtain all required full conditional distributions of the parameters leading to an exact Gibbs sampling for the posterior distribution. We used two real data sets to implement and evaluate the proposed Bayesian method and found that when the correlation between traits was high (>0.5), the proposed model (with unstructured variance–covariance) improved prediction accuracy compared to the model with diagonal and standard variance–covariance structures. The R-software package Bayesian Multi-Trait and Multi-Environment (BMTME) offers optimized C++ routines to efficiently perform the analyses." @default.
- W2502051256 created "2016-08-23" @default.
- W2502051256 creator A5031038442 @default.
- W2502051256 creator A5040770611 @default.
- W2502051256 creator A5049389291 @default.
- W2502051256 creator A5054554913 @default.
- W2502051256 creator A5062022156 @default.
- W2502051256 creator A5070866357 @default.
- W2502051256 creator A5076158905 @default.
- W2502051256 date "2016-09-01" @default.
- W2502051256 modified "2023-10-18" @default.
- W2502051256 title "A Genomic Bayesian Multi-trait and Multi-environment Model" @default.
- W2502051256 cites W1536497620 @default.
- W2502051256 cites W1648907168 @default.
- W2502051256 cites W191324832 @default.
- W2502051256 cites W1928998639 @default.
- W2502051256 cites W1963583598 @default.
- W2502051256 cites W1988489968 @default.
- W2502051256 cites W2003201326 @default.
- W2502051256 cites W2030126026 @default.
- W2502051256 cites W2032500684 @default.
- W2502051256 cites W2036577577 @default.
- W2502051256 cites W2047769598 @default.
- W2502051256 cites W2067252216 @default.
- W2502051256 cites W2067715889 @default.
- W2502051256 cites W2073964859 @default.
- W2502051256 cites W207502804 @default.
- W2502051256 cites W2082935924 @default.
- W2502051256 cites W2095808133 @default.
- W2502051256 cites W2099209235 @default.
- W2502051256 cites W2106201557 @default.
- W2502051256 cites W2107289228 @default.
- W2502051256 cites W2109349581 @default.
- W2502051256 cites W2127434935 @default.
- W2502051256 cites W2127843966 @default.
- W2502051256 cites W2128636460 @default.
- W2502051256 cites W2130060388 @default.
- W2502051256 cites W2130434665 @default.
- W2502051256 cites W2139280752 @default.
- W2502051256 cites W2148306906 @default.
- W2502051256 cites W2151391832 @default.
- W2502051256 cites W2157313957 @default.
- W2502051256 cites W2168952261 @default.
- W2502051256 cites W2495369798 @default.
- W2502051256 cites W4240727031 @default.
- W2502051256 cites W585085135 @default.
- W2502051256 doi "https://doi.org/10.1534/g3.116.032359" @default.
- W2502051256 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5015931" @default.
- W2502051256 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27342738" @default.
- W2502051256 hasPublicationYear "2016" @default.
- W2502051256 type Work @default.
- W2502051256 sameAs 2502051256 @default.
- W2502051256 citedByCount "104" @default.
- W2502051256 countsByYear W25020512562017 @default.
- W2502051256 countsByYear W25020512562018 @default.
- W2502051256 countsByYear W25020512562019 @default.
- W2502051256 countsByYear W25020512562020 @default.
- W2502051256 countsByYear W25020512562021 @default.
- W2502051256 countsByYear W25020512562022 @default.
- W2502051256 countsByYear W25020512562023 @default.
- W2502051256 crossrefType "journal-article" @default.
- W2502051256 hasAuthorship W2502051256A5031038442 @default.
- W2502051256 hasAuthorship W2502051256A5040770611 @default.
- W2502051256 hasAuthorship W2502051256A5049389291 @default.
- W2502051256 hasAuthorship W2502051256A5054554913 @default.
- W2502051256 hasAuthorship W2502051256A5062022156 @default.
- W2502051256 hasAuthorship W2502051256A5070866357 @default.
- W2502051256 hasAuthorship W2502051256A5076158905 @default.
- W2502051256 hasBestOaLocation W25020512561 @default.
- W2502051256 hasConcept C105795698 @default.
- W2502051256 hasConcept C106934330 @default.
- W2502051256 hasConcept C107673813 @default.
- W2502051256 hasConcept C111350023 @default.
- W2502051256 hasConcept C121955636 @default.
- W2502051256 hasConcept C144133560 @default.
- W2502051256 hasConcept C154945302 @default.
- W2502051256 hasConcept C158424031 @default.
- W2502051256 hasConcept C160234255 @default.
- W2502051256 hasConcept C177769412 @default.
- W2502051256 hasConcept C178650346 @default.
- W2502051256 hasConcept C185142706 @default.
- W2502051256 hasConcept C196083921 @default.
- W2502051256 hasConcept C199360897 @default.
- W2502051256 hasConcept C33923547 @default.
- W2502051256 hasConcept C41008148 @default.
- W2502051256 hasConceptScore W2502051256C105795698 @default.
- W2502051256 hasConceptScore W2502051256C106934330 @default.
- W2502051256 hasConceptScore W2502051256C107673813 @default.
- W2502051256 hasConceptScore W2502051256C111350023 @default.
- W2502051256 hasConceptScore W2502051256C121955636 @default.
- W2502051256 hasConceptScore W2502051256C144133560 @default.
- W2502051256 hasConceptScore W2502051256C154945302 @default.
- W2502051256 hasConceptScore W2502051256C158424031 @default.
- W2502051256 hasConceptScore W2502051256C160234255 @default.
- W2502051256 hasConceptScore W2502051256C177769412 @default.
- W2502051256 hasConceptScore W2502051256C178650346 @default.
- W2502051256 hasConceptScore W2502051256C185142706 @default.
- W2502051256 hasConceptScore W2502051256C196083921 @default.