Matches in SemOpenAlex for { <https://semopenalex.org/work/W2502225121> ?p ?o ?g. }
- W2502225121 endingPage "808" @default.
- W2502225121 startingPage "791" @default.
- W2502225121 abstract "Matching pedestrians across multiple camera views, known as human re-identification, is a challenging research problem that has numerous applications in visual surveillance. With the resurgence of Convolutional Neural Networks (CNNs), several end-to-end deep Siamese CNN architectures have been proposed for human re-identification with the objective of projecting the images of similar pairs (i.e. same identity) to be closer to each other and those of dissimilar pairs to be distant from each other. However, current networks extract fixed representations for each image regardless of other images which are paired with it and the comparison with other images is done only at the final level. In this setting, the network is at risk of failing to extract finer local patterns that may be essential to distinguish positive pairs from hard negative pairs. In this paper, we propose a gating function to selectively emphasize such fine common local patterns by comparing the mid-level features across pairs of images. This produces flexible representations for the same image according to the images they are paired with. We conduct experiments on the CUHK03, Market-1501 and VIPeR datasets and demonstrate improved performance compared to a baseline Siamese CNN architecture." @default.
- W2502225121 created "2016-08-23" @default.
- W2502225121 creator A5030921116 @default.
- W2502225121 creator A5039616158 @default.
- W2502225121 creator A5087823523 @default.
- W2502225121 date "2016-01-01" @default.
- W2502225121 modified "2023-10-16" @default.
- W2502225121 title "Gated Siamese Convolutional Neural Network Architecture for Human Re-identification" @default.
- W2502225121 cites W1602182271 @default.
- W2502225121 cites W166429404 @default.
- W2502225121 cites W1709635438 @default.
- W2502225121 cites W1897260080 @default.
- W2502225121 cites W1928419358 @default.
- W2502225121 cites W1935207225 @default.
- W2502225121 cites W1949591461 @default.
- W2502225121 cites W1962025484 @default.
- W2502225121 cites W1963882359 @default.
- W2502225121 cites W1979260620 @default.
- W2502225121 cites W1980818935 @default.
- W2502225121 cites W1982925187 @default.
- W2502225121 cites W2014850105 @default.
- W2502225121 cites W2033453961 @default.
- W2502225121 cites W2046835352 @default.
- W2502225121 cites W2062677035 @default.
- W2502225121 cites W2064675550 @default.
- W2502225121 cites W2068042582 @default.
- W2502225121 cites W2079972027 @default.
- W2502225121 cites W2109824782 @default.
- W2502225121 cites W2115669554 @default.
- W2502225121 cites W2116261113 @default.
- W2502225121 cites W2125889200 @default.
- W2502225121 cites W2126791727 @default.
- W2502225121 cites W2135442311 @default.
- W2502225121 cites W2151103935 @default.
- W2502225121 cites W2151873133 @default.
- W2502225121 cites W2163352848 @default.
- W2502225121 cites W2169495281 @default.
- W2502225121 cites W2203864774 @default.
- W2502225121 cites W2204750386 @default.
- W2502225121 cites W2220271458 @default.
- W2502225121 cites W2300840837 @default.
- W2502225121 cites W2342611082 @default.
- W2502225121 cites W2433217581 @default.
- W2502225121 cites W2467139031 @default.
- W2502225121 cites W2471048925 @default.
- W2502225121 cites W2474013209 @default.
- W2502225121 cites W2475284720 @default.
- W2502225121 cites W2491664569 @default.
- W2502225121 cites W46454230 @default.
- W2502225121 doi "https://doi.org/10.1007/978-3-319-46484-8_48" @default.
- W2502225121 hasPublicationYear "2016" @default.
- W2502225121 type Work @default.
- W2502225121 sameAs 2502225121 @default.
- W2502225121 citedByCount "358" @default.
- W2502225121 countsByYear W25022251212016 @default.
- W2502225121 countsByYear W25022251212017 @default.
- W2502225121 countsByYear W25022251212018 @default.
- W2502225121 countsByYear W25022251212019 @default.
- W2502225121 countsByYear W25022251212020 @default.
- W2502225121 countsByYear W25022251212021 @default.
- W2502225121 countsByYear W25022251212022 @default.
- W2502225121 countsByYear W25022251212023 @default.
- W2502225121 crossrefType "book-chapter" @default.
- W2502225121 hasAuthorship W2502225121A5030921116 @default.
- W2502225121 hasAuthorship W2502225121A5039616158 @default.
- W2502225121 hasAuthorship W2502225121A5087823523 @default.
- W2502225121 hasBestOaLocation W25022251212 @default.
- W2502225121 hasConcept C105795698 @default.
- W2502225121 hasConcept C115961682 @default.
- W2502225121 hasConcept C116834253 @default.
- W2502225121 hasConcept C121332964 @default.
- W2502225121 hasConcept C138885662 @default.
- W2502225121 hasConcept C153180895 @default.
- W2502225121 hasConcept C154945302 @default.
- W2502225121 hasConcept C165064840 @default.
- W2502225121 hasConcept C193415008 @default.
- W2502225121 hasConcept C24890656 @default.
- W2502225121 hasConcept C2776401178 @default.
- W2502225121 hasConcept C2778355321 @default.
- W2502225121 hasConcept C31972630 @default.
- W2502225121 hasConcept C33923547 @default.
- W2502225121 hasConcept C38652104 @default.
- W2502225121 hasConcept C41008148 @default.
- W2502225121 hasConcept C41895202 @default.
- W2502225121 hasConcept C59822182 @default.
- W2502225121 hasConcept C81363708 @default.
- W2502225121 hasConcept C86803240 @default.
- W2502225121 hasConceptScore W2502225121C105795698 @default.
- W2502225121 hasConceptScore W2502225121C115961682 @default.
- W2502225121 hasConceptScore W2502225121C116834253 @default.
- W2502225121 hasConceptScore W2502225121C121332964 @default.
- W2502225121 hasConceptScore W2502225121C138885662 @default.
- W2502225121 hasConceptScore W2502225121C153180895 @default.
- W2502225121 hasConceptScore W2502225121C154945302 @default.
- W2502225121 hasConceptScore W2502225121C165064840 @default.
- W2502225121 hasConceptScore W2502225121C193415008 @default.
- W2502225121 hasConceptScore W2502225121C24890656 @default.
- W2502225121 hasConceptScore W2502225121C2776401178 @default.