Matches in SemOpenAlex for { <https://semopenalex.org/work/W2502402018> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2502402018 endingPage "4040" @default.
- W2502402018 startingPage "4034" @default.
- W2502402018 abstract "Images have constituted an essential data source in medicine in the last decades. Medical images derived from diagnostic technologies (e.g., X-ray, ultrasound, computed tomography, magnetic resonance, nuclear imaging) are used to improve the existing diagnostic systems for clinical purposes, but also to facilitate medical research. Hence, medical image processing techniques are constantly investigated and evolved. Medical image segmentation is the primary stage to the visualization and clinical analysis of human tissues. It refers to the segmentation of known anatomic structures from medical images. Structures of interest include organs or parts thereof, such as cardiac ventricles or kidneys, abnormalities such as tumors and cysts, as well as other structures such as bones, vessels, brain structures and so forth. The overall objective of such methods is referred to as computer-aided diagnosis; in other words, they are used for assisting doctors in evaluating medical imagery or in recognizing abnormal findings in a medical image. In contrast to generic segmentation methods, techniques used for medical image segmentation are often applicationspecific; as such, they can make use of prior knowledge for the particular objects of interest and other expected or possible structures in the image. This has led to the development of a wide range of segmentation methods addressing specific problems in medical applications. In the sequel of this article, the analysis of medical visual information generated by three different medical imaging processes will be discussed in detail: Magnetic Resonance Imaging (MRI), Mammography, and Intravascular Ultrasound (IVUS). Clearly, in addition to the aforementioned imaging processes and the techniques for their analysis that are discussed in the sequel, numerous other algorithms for applications of segmentation to specialized medical imagery interpretation exist." @default.
- W2502402018 created "2016-08-23" @default.
- W2502402018 creator A5031840071 @default.
- W2502402018 creator A5059096027 @default.
- W2502402018 creator A5068803385 @default.
- W2502402018 date "2011-05-24" @default.
- W2502402018 modified "2023-09-27" @default.
- W2502402018 title "Visual Medical Information Analysis" @default.
- W2502402018 cites W1572314759 @default.
- W2502402018 cites W1968329416 @default.
- W2502402018 cites W1972394162 @default.
- W2502402018 cites W1984405652 @default.
- W2502402018 cites W2026814383 @default.
- W2502402018 cites W2060716785 @default.
- W2502402018 cites W2097911425 @default.
- W2502402018 cites W2104254046 @default.
- W2502402018 cites W2119724493 @default.
- W2502402018 cites W2124102480 @default.
- W2502402018 cites W2125016262 @default.
- W2502402018 cites W2131006320 @default.
- W2502402018 cites W2133608050 @default.
- W2502402018 cites W2133920957 @default.
- W2502402018 cites W2136457464 @default.
- W2502402018 cites W2139904946 @default.
- W2502402018 cites W2147698142 @default.
- W2502402018 cites W2150606601 @default.
- W2502402018 cites W2160172739 @default.
- W2502402018 cites W2163615155 @default.
- W2502402018 cites W2166509719 @default.
- W2502402018 cites W2170949629 @default.
- W2502402018 cites W2988143368 @default.
- W2502402018 cites W4300148939 @default.
- W2502402018 doi "https://doi.org/10.4018/978-1-60566-026-4.ch644" @default.
- W2502402018 hasPublicationYear "2011" @default.
- W2502402018 type Work @default.
- W2502402018 sameAs 2502402018 @default.
- W2502402018 citedByCount "0" @default.
- W2502402018 crossrefType "book-chapter" @default.
- W2502402018 hasAuthorship W2502402018A5031840071 @default.
- W2502402018 hasAuthorship W2502402018A5059096027 @default.
- W2502402018 hasAuthorship W2502402018A5068803385 @default.
- W2502402018 hasConcept C23123220 @default.
- W2502402018 hasConcept C3019150057 @default.
- W2502402018 hasConcept C41008148 @default.
- W2502402018 hasConceptScore W2502402018C23123220 @default.
- W2502402018 hasConceptScore W2502402018C3019150057 @default.
- W2502402018 hasConceptScore W2502402018C41008148 @default.
- W2502402018 hasLocation W25024020181 @default.
- W2502402018 hasOpenAccess W2502402018 @default.
- W2502402018 hasPrimaryLocation W25024020181 @default.
- W2502402018 hasRelatedWork W1511299647 @default.
- W2502402018 hasRelatedWork W1570850074 @default.
- W2502402018 hasRelatedWork W1939402144 @default.
- W2502402018 hasRelatedWork W1971234210 @default.
- W2502402018 hasRelatedWork W1979257986 @default.
- W2502402018 hasRelatedWork W1987512289 @default.
- W2502402018 hasRelatedWork W2014545843 @default.
- W2502402018 hasRelatedWork W2036369046 @default.
- W2502402018 hasRelatedWork W2069568401 @default.
- W2502402018 hasRelatedWork W2072909405 @default.
- W2502402018 hasRelatedWork W2101363568 @default.
- W2502402018 hasRelatedWork W2276792886 @default.
- W2502402018 hasRelatedWork W2520894513 @default.
- W2502402018 hasRelatedWork W2533100792 @default.
- W2502402018 hasRelatedWork W2539602561 @default.
- W2502402018 hasRelatedWork W2559421235 @default.
- W2502402018 hasRelatedWork W2613544642 @default.
- W2502402018 hasRelatedWork W3164248416 @default.
- W2502402018 hasRelatedWork W3184350345 @default.
- W2502402018 hasRelatedWork W3124512465 @default.
- W2502402018 isParatext "false" @default.
- W2502402018 isRetracted "false" @default.
- W2502402018 magId "2502402018" @default.
- W2502402018 workType "book-chapter" @default.