Matches in SemOpenAlex for { <https://semopenalex.org/work/W250426404> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W250426404 endingPage "121" @default.
- W250426404 startingPage "107" @default.
- W250426404 abstract "This paper introduces AMAL, an operational automated and behavior-based malware analysis and labeling (classification and clustering) system that addresses many limitations and shortcomings of the existing academic and industrial systems. AMAL consists of two sub-systems, AutoMal and MaLabel. AutoMal provides tools to collect low granularity behavioral artifacts that characterize malware usage of the file system, memory, network, and registry, and does that by running malware samples in virtualized environments. On the other hand, MaLabel uses those artifacts to create representative features, use them for building classifiers trained by manually-vetted training samples, and use those classifiers to classify malware samples into families similar in behavior. AutoMal also enables unsupervised learning, by implementing multiple clustering algorithms for samples grouping. An evaluation of both AutoMal and MaLabel based on medium-scale (4,000 samples) and large-scale datasets (more than 115,000 samples)—collected and analyzed by AutoMal over 13 months—show AMAL’s effectiveness in accurately characterizing, classifying, and grouping malware samples. MaLabel achieves a precision of 99.5 % and recall of 99.6 % for certain families’ classification, and more than 98 % of precision and recall for unsupervised clustering. Several benchmarks, costs estimates and measurements highlight and support the merits and features of AMAL." @default.
- W250426404 created "2016-06-24" @default.
- W250426404 creator A5077402873 @default.
- W250426404 creator A5088269951 @default.
- W250426404 date "2015-01-01" @default.
- W250426404 modified "2023-09-24" @default.
- W250426404 title "AMAL: High-Fidelity, Behavior-Based Automated Malware Analysis and Classification" @default.
- W250426404 cites W1553801604 @default.
- W250426404 cites W1581009051 @default.
- W250426404 cites W1851403712 @default.
- W250426404 cites W1973685381 @default.
- W250426404 cites W1985987493 @default.
- W250426404 cites W1993767827 @default.
- W250426404 cites W2083183119 @default.
- W250426404 cites W2105631555 @default.
- W250426404 cites W2114996745 @default.
- W250426404 cites W2119521622 @default.
- W250426404 cites W2126401948 @default.
- W250426404 cites W2137314966 @default.
- W250426404 cites W2138644293 @default.
- W250426404 cites W2149701633 @default.
- W250426404 cites W2106888311 @default.
- W250426404 doi "https://doi.org/10.1007/978-3-319-15087-1_9" @default.
- W250426404 hasPublicationYear "2015" @default.
- W250426404 type Work @default.
- W250426404 sameAs 250426404 @default.
- W250426404 citedByCount "14" @default.
- W250426404 countsByYear W2504264042013 @default.
- W250426404 countsByYear W2504264042015 @default.
- W250426404 countsByYear W2504264042016 @default.
- W250426404 countsByYear W2504264042017 @default.
- W250426404 countsByYear W2504264042018 @default.
- W250426404 countsByYear W2504264042019 @default.
- W250426404 countsByYear W2504264042020 @default.
- W250426404 countsByYear W2504264042022 @default.
- W250426404 crossrefType "book-chapter" @default.
- W250426404 hasAuthorship W250426404A5077402873 @default.
- W250426404 hasAuthorship W250426404A5088269951 @default.
- W250426404 hasConcept C111919701 @default.
- W250426404 hasConcept C119857082 @default.
- W250426404 hasConcept C124101348 @default.
- W250426404 hasConcept C153180895 @default.
- W250426404 hasConcept C154945302 @default.
- W250426404 hasConcept C177774035 @default.
- W250426404 hasConcept C2779395397 @default.
- W250426404 hasConcept C41008148 @default.
- W250426404 hasConcept C541664917 @default.
- W250426404 hasConcept C73555534 @default.
- W250426404 hasConceptScore W250426404C111919701 @default.
- W250426404 hasConceptScore W250426404C119857082 @default.
- W250426404 hasConceptScore W250426404C124101348 @default.
- W250426404 hasConceptScore W250426404C153180895 @default.
- W250426404 hasConceptScore W250426404C154945302 @default.
- W250426404 hasConceptScore W250426404C177774035 @default.
- W250426404 hasConceptScore W250426404C2779395397 @default.
- W250426404 hasConceptScore W250426404C41008148 @default.
- W250426404 hasConceptScore W250426404C541664917 @default.
- W250426404 hasConceptScore W250426404C73555534 @default.
- W250426404 hasLocation W2504264041 @default.
- W250426404 hasOpenAccess W250426404 @default.
- W250426404 hasPrimaryLocation W2504264041 @default.
- W250426404 hasRelatedWork W1599173567 @default.
- W250426404 hasRelatedWork W2035161682 @default.
- W250426404 hasRelatedWork W2352363108 @default.
- W250426404 hasRelatedWork W2383487638 @default.
- W250426404 hasRelatedWork W2387100969 @default.
- W250426404 hasRelatedWork W2389471107 @default.
- W250426404 hasRelatedWork W2768705651 @default.
- W250426404 hasRelatedWork W3178528869 @default.
- W250426404 hasRelatedWork W4287280928 @default.
- W250426404 hasRelatedWork W99904291 @default.
- W250426404 isParatext "false" @default.
- W250426404 isRetracted "false" @default.
- W250426404 magId "250426404" @default.
- W250426404 workType "book-chapter" @default.