Matches in SemOpenAlex for { <https://semopenalex.org/work/W2504820066> ?p ?o ?g. }
- W2504820066 abstract "Abstract Traditional feature-based or text processing techniques tend to assign the same annotation to all the images in the same cluster without considering the latent semantic anecdotes of each image. In this research, we propose the Chinese lexical chain processing method which is a bottom-up concatenating process based on the intensity and the degree of a lexical chain (LC) to extract the most meaningful LCs as anecdotes from a string. It requires minimum computation that allows sharing characters/words and facilitating their use at fine granularities without prohibitive cost. In the experiment, this method achieves a precision rate of 84.6%, and gains acceptance from expert rating and user rating of 84% and 76.6%, respectively. In performance testing, it only takes 0.007 s to process each image in a collection of 18,000 testing data set." @default.
- W2504820066 created "2016-08-23" @default.
- W2504820066 creator A5043135511 @default.
- W2504820066 date "2015-01-01" @default.
- W2504820066 modified "2023-09-27" @default.
- W2504820066 title "Anecdotes extraction from webpage context as image annotation" @default.
- W2504820066 cites W1649645444 @default.
- W2504820066 cites W1956559956 @default.
- W2504820066 cites W1991126947 @default.
- W2504820066 cites W1994582333 @default.
- W2504820066 cites W1996141620 @default.
- W2504820066 cites W1998844786 @default.
- W2504820066 cites W2021350584 @default.
- W2504820066 cites W2025690557 @default.
- W2504820066 cites W2031504332 @default.
- W2504820066 cites W2039965491 @default.
- W2504820066 cites W2040574236 @default.
- W2504820066 cites W2081664963 @default.
- W2504820066 cites W2102122474 @default.
- W2504820066 cites W2110227879 @default.
- W2504820066 cites W2119948965 @default.
- W2504820066 cites W2122340686 @default.
- W2504820066 cites W2123241287 @default.
- W2504820066 cites W2127711253 @default.
- W2504820066 cites W2130730142 @default.
- W2504820066 cites W2137471889 @default.
- W2504820066 cites W2140275264 @default.
- W2504820066 cites W2140789195 @default.
- W2504820066 cites W2147888113 @default.
- W2504820066 cites W2155417005 @default.
- W2504820066 cites W2156241735 @default.
- W2504820066 cites W2161547966 @default.
- W2504820066 cites W2167295232 @default.
- W2504820066 cites W2535856022 @default.
- W2504820066 doi "https://doi.org/10.1016/b978-0-12-802045-6.00022-3" @default.
- W2504820066 hasPublicationYear "2015" @default.
- W2504820066 type Work @default.
- W2504820066 sameAs 2504820066 @default.
- W2504820066 citedByCount "0" @default.
- W2504820066 crossrefType "book-chapter" @default.
- W2504820066 hasAuthorship W2504820066A5043135511 @default.
- W2504820066 hasConcept C111919701 @default.
- W2504820066 hasConcept C115961682 @default.
- W2504820066 hasConcept C138885662 @default.
- W2504820066 hasConcept C151730666 @default.
- W2504820066 hasConcept C153180895 @default.
- W2504820066 hasConcept C154945302 @default.
- W2504820066 hasConcept C157486923 @default.
- W2504820066 hasConcept C177264268 @default.
- W2504820066 hasConcept C199360897 @default.
- W2504820066 hasConcept C204321447 @default.
- W2504820066 hasConcept C23123220 @default.
- W2504820066 hasConcept C2776321320 @default.
- W2504820066 hasConcept C2776401178 @default.
- W2504820066 hasConcept C2779343474 @default.
- W2504820066 hasConcept C33923547 @default.
- W2504820066 hasConcept C37914503 @default.
- W2504820066 hasConcept C41008148 @default.
- W2504820066 hasConcept C41895202 @default.
- W2504820066 hasConcept C52622490 @default.
- W2504820066 hasConcept C86803240 @default.
- W2504820066 hasConcept C98045186 @default.
- W2504820066 hasConceptScore W2504820066C111919701 @default.
- W2504820066 hasConceptScore W2504820066C115961682 @default.
- W2504820066 hasConceptScore W2504820066C138885662 @default.
- W2504820066 hasConceptScore W2504820066C151730666 @default.
- W2504820066 hasConceptScore W2504820066C153180895 @default.
- W2504820066 hasConceptScore W2504820066C154945302 @default.
- W2504820066 hasConceptScore W2504820066C157486923 @default.
- W2504820066 hasConceptScore W2504820066C177264268 @default.
- W2504820066 hasConceptScore W2504820066C199360897 @default.
- W2504820066 hasConceptScore W2504820066C204321447 @default.
- W2504820066 hasConceptScore W2504820066C23123220 @default.
- W2504820066 hasConceptScore W2504820066C2776321320 @default.
- W2504820066 hasConceptScore W2504820066C2776401178 @default.
- W2504820066 hasConceptScore W2504820066C2779343474 @default.
- W2504820066 hasConceptScore W2504820066C33923547 @default.
- W2504820066 hasConceptScore W2504820066C37914503 @default.
- W2504820066 hasConceptScore W2504820066C41008148 @default.
- W2504820066 hasConceptScore W2504820066C41895202 @default.
- W2504820066 hasConceptScore W2504820066C52622490 @default.
- W2504820066 hasConceptScore W2504820066C86803240 @default.
- W2504820066 hasConceptScore W2504820066C98045186 @default.
- W2504820066 hasLocation W25048200661 @default.
- W2504820066 hasOpenAccess W2504820066 @default.
- W2504820066 hasPrimaryLocation W25048200661 @default.
- W2504820066 hasRelatedWork W197270748 @default.
- W2504820066 hasRelatedWork W2016443085 @default.
- W2504820066 hasRelatedWork W2035938204 @default.
- W2504820066 hasRelatedWork W2087284041 @default.
- W2504820066 hasRelatedWork W2123409753 @default.
- W2504820066 hasRelatedWork W2138052231 @default.
- W2504820066 hasRelatedWork W2183001427 @default.
- W2504820066 hasRelatedWork W2219922309 @default.
- W2504820066 hasRelatedWork W2251404146 @default.
- W2504820066 hasRelatedWork W2489218782 @default.
- W2504820066 hasRelatedWork W2790482644 @default.
- W2504820066 hasRelatedWork W2806261291 @default.
- W2504820066 hasRelatedWork W2884234139 @default.
- W2504820066 hasRelatedWork W2969112210 @default.