Matches in SemOpenAlex for { <https://semopenalex.org/work/W2505702019> ?p ?o ?g. }
- W2505702019 endingPage "811" @default.
- W2505702019 startingPage "798" @default.
- W2505702019 abstract "I start by providing an updated summary of the penalized pixel-fitting (ppxf) method that is used to extract the stellar and gas kinematics, as well as the stellar population of galaxies, via full spectrum fitting. I then focus on the problem of extracting the kinematics when the velocity dispersion σ is smaller than the velocity sampling ΔV that is generally, by design, close to the instrumental dispersion σinst. The standard approach consists of convolving templates with a discretized kernel, while fitting for its parameters. This is obviously very inaccurate when σ ≲ ΔV/2, due to undersampling. Oversampling can prevent this, but it has drawbacks. Here I present a more accurate and efficient alternative. It avoids the evaluation of the undersampled kernel and instead directly computes its well-sampled analytic Fourier transform, for use with the convolution theorem. A simple analytic transform exists when the kernel is described by the popular Gauss–Hermite parametrization (which includes the Gaussian as special case) for the line-of-sight velocity distribution. I describe how this idea was implemented in a significant upgrade to the publicly available ppxf software. The key advantage of the new approach is that it provides accurate velocities regardless of σ. This is important e.g. for spectroscopic surveys targeting galaxies with σ ≪ σinst, for galaxy redshift determinations or for measuring line-of-sight velocities of individual stars. The proposed method could also be used to fix Gaussian convolution algorithms used in today's popular software packages." @default.
- W2505702019 created "2016-08-23" @default.
- W2505702019 creator A5046964551 @default.
- W2505702019 date "2016-11-22" @default.
- W2505702019 modified "2023-10-18" @default.
- W2505702019 title "Improving the full spectrum fitting method: accurate convolution with Gauss–Hermite functions" @default.
- W2505702019 cites W1499852305 @default.
- W2505702019 cites W1594234351 @default.
- W2505702019 cites W173148493 @default.
- W2505702019 cites W1828310033 @default.
- W2505702019 cites W1833558459 @default.
- W2505702019 cites W1838669520 @default.
- W2505702019 cites W1919434783 @default.
- W2505702019 cites W1965189708 @default.
- W2505702019 cites W1979224021 @default.
- W2505702019 cites W1984716389 @default.
- W2505702019 cites W1989939031 @default.
- W2505702019 cites W1989983328 @default.
- W2505702019 cites W1994671833 @default.
- W2505702019 cites W2003814700 @default.
- W2505702019 cites W2005660297 @default.
- W2505702019 cites W2011301426 @default.
- W2505702019 cites W2016094316 @default.
- W2505702019 cites W2030216825 @default.
- W2505702019 cites W2032988955 @default.
- W2505702019 cites W2034227336 @default.
- W2505702019 cites W2034901999 @default.
- W2505702019 cites W2038820954 @default.
- W2505702019 cites W2042265235 @default.
- W2505702019 cites W2047430545 @default.
- W2505702019 cites W2051879158 @default.
- W2505702019 cites W2061418802 @default.
- W2505702019 cites W2075665712 @default.
- W2505702019 cites W2084691636 @default.
- W2505702019 cites W2086348625 @default.
- W2505702019 cites W2086421432 @default.
- W2505702019 cites W2087802453 @default.
- W2505702019 cites W2088034685 @default.
- W2505702019 cites W2090482424 @default.
- W2505702019 cites W2091739399 @default.
- W2505702019 cites W2096643625 @default.
- W2505702019 cites W2098830799 @default.
- W2505702019 cites W2105459858 @default.
- W2505702019 cites W2105954496 @default.
- W2505702019 cites W2109521785 @default.
- W2505702019 cites W2110114082 @default.
- W2505702019 cites W2110741028 @default.
- W2505702019 cites W2111356925 @default.
- W2505702019 cites W2112759620 @default.
- W2505702019 cites W2128353236 @default.
- W2505702019 cites W2130707009 @default.
- W2505702019 cites W2131385754 @default.
- W2505702019 cites W2135625048 @default.
- W2505702019 cites W2138302982 @default.
- W2505702019 cites W2145086822 @default.
- W2505702019 cites W2151062050 @default.
- W2505702019 cites W2151684988 @default.
- W2505702019 cites W2152345208 @default.
- W2505702019 cites W2153783746 @default.
- W2505702019 cites W2162380162 @default.
- W2505702019 cites W2163117531 @default.
- W2505702019 cites W2165123747 @default.
- W2505702019 cites W2167635287 @default.
- W2505702019 cites W2176301515 @default.
- W2505702019 cites W2207462614 @default.
- W2505702019 cites W2235377628 @default.
- W2505702019 cites W2309252738 @default.
- W2505702019 cites W2532571414 @default.
- W2505702019 cites W2601053151 @default.
- W2505702019 cites W3099765569 @default.
- W2505702019 cites W3102198414 @default.
- W2505702019 cites W3103247671 @default.
- W2505702019 cites W3103472953 @default.
- W2505702019 cites W3104134858 @default.
- W2505702019 cites W3106049480 @default.
- W2505702019 cites W3123285458 @default.
- W2505702019 cites W3124001149 @default.
- W2505702019 cites W3124057309 @default.
- W2505702019 cites W3124428178 @default.
- W2505702019 cites W3124734075 @default.
- W2505702019 cites W3125793999 @default.
- W2505702019 cites W4211245634 @default.
- W2505702019 cites W4231896027 @default.
- W2505702019 cites W4248681815 @default.
- W2505702019 cites W4290089955 @default.
- W2505702019 cites W4292399985 @default.
- W2505702019 doi "https://doi.org/10.1093/mnras/stw3020" @default.
- W2505702019 hasPublicationYear "2016" @default.
- W2505702019 type Work @default.
- W2505702019 sameAs 2505702019 @default.
- W2505702019 citedByCount "758" @default.
- W2505702019 countsByYear W25057020192016 @default.
- W2505702019 countsByYear W25057020192017 @default.
- W2505702019 countsByYear W25057020192018 @default.
- W2505702019 countsByYear W25057020192019 @default.
- W2505702019 countsByYear W25057020192020 @default.
- W2505702019 countsByYear W25057020192021 @default.
- W2505702019 countsByYear W25057020192022 @default.