Matches in SemOpenAlex for { <https://semopenalex.org/work/W2505736237> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2505736237 endingPage "1699" @default.
- W2505736237 startingPage "1678" @default.
- W2505736237 abstract "Purpose The prediction of graduation rates of college students has become increasingly important to colleges and universities across the USA and the world. Graduation rates, also referred to as completion rates, directly impact university rankings and represent a measurement of institutional performance and student success. In recent years, there has been a concerted effort by federal and state governments to increase the transparency and accountability of institutions, making “graduation rates” an important and challenging university goal. In line with this, the main purpose of this paper is to propose a hybrid data analytic approach which can be flexibly implemented not only in the USA but also at various colleges across the world which would help predict the graduation status of undergraduate students due to its generic nature. It is also aimed at providing a means of determining and ranking the critical factors of graduation status. Design/methodology/approach This study focuses on developing a novel hybrid data analytic approach to predict the degree completion of undergraduate students at a four-year public university in the USA. Via the deployment of the proposed methodology, the data were analyzed using three popular data mining classifications methods (i.e. decision trees, artificial neural networks, and support vector machines) to develop predictive degree completion models. Finally, a sensitivity analysis is performed to identify the relative importance of each predictor factor driving the graduation. Findings The sensitivity analysis of the most critical factors in predicting graduation rates is determined to be fall-term grade-point average, housing status (on campus or commuter), and which high school the student attended. The least influential factors of graduation status are ethnicity, whether or not a student had work study, and whether or not a student applied for financial aid. All three data analytic models yielded high accuracies ranging from 71.56 to 77.61 percent, which validates the proposed model. Originality/value This study presents uniqueness in that it presents an unbiased means of determining the driving factors of college graduation status with a flexible and powerful hybrid methodology to be implemented at other similar decision-making settings." @default.
- W2505736237 created "2016-08-23" @default.
- W2505736237 creator A5064221243 @default.
- W2505736237 date "2016-09-12" @default.
- W2505736237 modified "2023-10-05" @default.
- W2505736237 title "A hybrid data analytic approach to predict college graduation status and its determinative factors" @default.
- W2505736237 cites W1969599513 @default.
- W2505736237 cites W1970881937 @default.
- W2505736237 cites W1984646461 @default.
- W2505736237 cites W1985925863 @default.
- W2505736237 cites W1990844260 @default.
- W2505736237 cites W1995082521 @default.
- W2505736237 cites W1998384129 @default.
- W2505736237 cites W2000280611 @default.
- W2505736237 cites W2001355090 @default.
- W2505736237 cites W2015780725 @default.
- W2505736237 cites W2029767409 @default.
- W2505736237 cites W2035057469 @default.
- W2505736237 cites W2069793024 @default.
- W2505736237 cites W2093058549 @default.
- W2505736237 cites W2106010205 @default.
- W2505736237 cites W2141895973 @default.
- W2505736237 cites W2163048132 @default.
- W2505736237 cites W2326738542 @default.
- W2505736237 cites W3123563845 @default.
- W2505736237 cites W4236137412 @default.
- W2505736237 cites W4239510810 @default.
- W2505736237 doi "https://doi.org/10.1108/imds-09-2015-0363" @default.
- W2505736237 hasPublicationYear "2016" @default.
- W2505736237 type Work @default.
- W2505736237 sameAs 2505736237 @default.
- W2505736237 citedByCount "26" @default.
- W2505736237 countsByYear W25057362372018 @default.
- W2505736237 countsByYear W25057362372019 @default.
- W2505736237 countsByYear W25057362372020 @default.
- W2505736237 countsByYear W25057362372021 @default.
- W2505736237 countsByYear W25057362372022 @default.
- W2505736237 countsByYear W25057362372023 @default.
- W2505736237 crossrefType "journal-article" @default.
- W2505736237 hasAuthorship W2505736237A5064221243 @default.
- W2505736237 hasConcept C119857082 @default.
- W2505736237 hasConcept C127413603 @default.
- W2505736237 hasConcept C145420912 @default.
- W2505736237 hasConcept C15744967 @default.
- W2505736237 hasConcept C17744445 @default.
- W2505736237 hasConcept C189430467 @default.
- W2505736237 hasConcept C199539241 @default.
- W2505736237 hasConcept C2776007630 @default.
- W2505736237 hasConcept C2779529714 @default.
- W2505736237 hasConcept C2780233690 @default.
- W2505736237 hasConcept C38652104 @default.
- W2505736237 hasConcept C41008148 @default.
- W2505736237 hasConcept C78519656 @default.
- W2505736237 hasConceptScore W2505736237C119857082 @default.
- W2505736237 hasConceptScore W2505736237C127413603 @default.
- W2505736237 hasConceptScore W2505736237C145420912 @default.
- W2505736237 hasConceptScore W2505736237C15744967 @default.
- W2505736237 hasConceptScore W2505736237C17744445 @default.
- W2505736237 hasConceptScore W2505736237C189430467 @default.
- W2505736237 hasConceptScore W2505736237C199539241 @default.
- W2505736237 hasConceptScore W2505736237C2776007630 @default.
- W2505736237 hasConceptScore W2505736237C2779529714 @default.
- W2505736237 hasConceptScore W2505736237C2780233690 @default.
- W2505736237 hasConceptScore W2505736237C38652104 @default.
- W2505736237 hasConceptScore W2505736237C41008148 @default.
- W2505736237 hasConceptScore W2505736237C78519656 @default.
- W2505736237 hasIssue "8" @default.
- W2505736237 hasLocation W25057362371 @default.
- W2505736237 hasOpenAccess W2505736237 @default.
- W2505736237 hasPrimaryLocation W25057362371 @default.
- W2505736237 hasRelatedWork W1863951150 @default.
- W2505736237 hasRelatedWork W1907214306 @default.
- W2505736237 hasRelatedWork W2748952813 @default.
- W2505736237 hasRelatedWork W2810478545 @default.
- W2505736237 hasRelatedWork W2899084033 @default.
- W2505736237 hasRelatedWork W3012898162 @default.
- W2505736237 hasRelatedWork W3106344240 @default.
- W2505736237 hasRelatedWork W3122557281 @default.
- W2505736237 hasRelatedWork W3199802296 @default.
- W2505736237 hasRelatedWork W3203579880 @default.
- W2505736237 hasVolume "116" @default.
- W2505736237 isParatext "false" @default.
- W2505736237 isRetracted "false" @default.
- W2505736237 magId "2505736237" @default.
- W2505736237 workType "article" @default.