Matches in SemOpenAlex for { <https://semopenalex.org/work/W2506166462> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2506166462 endingPage "122" @default.
- W2506166462 startingPage "75" @default.
- W2506166462 abstract "Toric varieties form an important class of examples in algebraic geometry, as they admit a complete description in terms of combinatorial data, so-called lattice fans. In Section 2.1, we briefly recall this description and also some of the basic facts in toric geometry. Then we present Cox's construction of the characteristic space of a toric variety in terms of a defining fan and discuss the basic geometry around this. Section 2.2 is pure combinatorics. We introduce the notion of a “bunch of cones” and show that, in an appropriate setting, this is the Gale dual version of a fan. Under this duality, the normal fans of polytopes correspond to bunches of cones arising canonically from the chambers of the so-called Gelfand–Kapranov–Zelevinsky decomposition. In Section 2.3, we discuss the geometric meaning of bunches of cones: they encode the maximal separated good quotients for subgroups of the acting torus on an affine toric variety. In Section 2.4, we specialize these considerations to toric characteristic spaces, that is, to the good quotients arising from Cox's construction. This leads to an alternative combinatorial description of toric varieties in terms of “lattice bunches,” which turns out to be particularly suitable for phenomena around divisors. Toric varieties Toric varieties and fans We introduce toric varieties and their morphisms and recall that this category admits a complete description in terms of lattice fans. Definition 2.1.1.1 A toric variety is an irreducible, normal variety X together with an algebraic torus action T × X → X and a base point x 0 ∈ X such that the orbit map T → X , t → t · x 0 is an open embedding." @default.
- W2506166462 created "2016-08-23" @default.
- W2506166462 creator A5021839341 @default.
- W2506166462 creator A5040660571 @default.
- W2506166462 creator A5055936436 @default.
- W2506166462 creator A5063629694 @default.
- W2506166462 date "2014-10-05" @default.
- W2506166462 modified "2023-10-18" @default.
- W2506166462 title "Toric varieties and Gale duality" @default.
- W2506166462 doi "https://doi.org/10.1017/cbo9781139175852.003" @default.
- W2506166462 hasPublicationYear "2014" @default.
- W2506166462 type Work @default.
- W2506166462 sameAs 2506166462 @default.
- W2506166462 citedByCount "0" @default.
- W2506166462 crossrefType "book-chapter" @default.
- W2506166462 hasAuthorship W2506166462A5021839341 @default.
- W2506166462 hasAuthorship W2506166462A5040660571 @default.
- W2506166462 hasAuthorship W2506166462A5055936436 @default.
- W2506166462 hasAuthorship W2506166462A5063629694 @default.
- W2506166462 hasConcept C105795698 @default.
- W2506166462 hasConcept C111919701 @default.
- W2506166462 hasConcept C121332964 @default.
- W2506166462 hasConcept C136119220 @default.
- W2506166462 hasConcept C136197465 @default.
- W2506166462 hasConcept C137212723 @default.
- W2506166462 hasConcept C199422724 @default.
- W2506166462 hasConcept C202444582 @default.
- W2506166462 hasConcept C24890656 @default.
- W2506166462 hasConcept C2524010 @default.
- W2506166462 hasConcept C2778023678 @default.
- W2506166462 hasConcept C2780129039 @default.
- W2506166462 hasConcept C2781204021 @default.
- W2506166462 hasConcept C33923547 @default.
- W2506166462 hasConcept C41008148 @default.
- W2506166462 hasConcept C5052557 @default.
- W2506166462 hasConcept C68363185 @default.
- W2506166462 hasConcept C9767117 @default.
- W2506166462 hasConceptScore W2506166462C105795698 @default.
- W2506166462 hasConceptScore W2506166462C111919701 @default.
- W2506166462 hasConceptScore W2506166462C121332964 @default.
- W2506166462 hasConceptScore W2506166462C136119220 @default.
- W2506166462 hasConceptScore W2506166462C136197465 @default.
- W2506166462 hasConceptScore W2506166462C137212723 @default.
- W2506166462 hasConceptScore W2506166462C199422724 @default.
- W2506166462 hasConceptScore W2506166462C202444582 @default.
- W2506166462 hasConceptScore W2506166462C24890656 @default.
- W2506166462 hasConceptScore W2506166462C2524010 @default.
- W2506166462 hasConceptScore W2506166462C2778023678 @default.
- W2506166462 hasConceptScore W2506166462C2780129039 @default.
- W2506166462 hasConceptScore W2506166462C2781204021 @default.
- W2506166462 hasConceptScore W2506166462C33923547 @default.
- W2506166462 hasConceptScore W2506166462C41008148 @default.
- W2506166462 hasConceptScore W2506166462C5052557 @default.
- W2506166462 hasConceptScore W2506166462C68363185 @default.
- W2506166462 hasConceptScore W2506166462C9767117 @default.
- W2506166462 hasLocation W25061664621 @default.
- W2506166462 hasOpenAccess W2506166462 @default.
- W2506166462 hasPrimaryLocation W25061664621 @default.
- W2506166462 hasRelatedWork W150586754 @default.
- W2506166462 hasRelatedWork W1791879601 @default.
- W2506166462 hasRelatedWork W1966410086 @default.
- W2506166462 hasRelatedWork W1992727524 @default.
- W2506166462 hasRelatedWork W2136066521 @default.
- W2506166462 hasRelatedWork W2595321205 @default.
- W2506166462 hasRelatedWork W2738066279 @default.
- W2506166462 hasRelatedWork W2781571177 @default.
- W2506166462 hasRelatedWork W2920878433 @default.
- W2506166462 hasRelatedWork W2949186655 @default.
- W2506166462 hasRelatedWork W2950932012 @default.
- W2506166462 hasRelatedWork W2951226685 @default.
- W2506166462 hasRelatedWork W2951540836 @default.
- W2506166462 hasRelatedWork W2990930648 @default.
- W2506166462 hasRelatedWork W3037397120 @default.
- W2506166462 hasRelatedWork W3047040773 @default.
- W2506166462 hasRelatedWork W3099871559 @default.
- W2506166462 hasRelatedWork W3105969971 @default.
- W2506166462 hasRelatedWork W3161169577 @default.
- W2506166462 hasRelatedWork W990065280 @default.
- W2506166462 isParatext "false" @default.
- W2506166462 isRetracted "false" @default.
- W2506166462 magId "2506166462" @default.
- W2506166462 workType "book-chapter" @default.