Matches in SemOpenAlex for { <https://semopenalex.org/work/W2506301897> ?p ?o ?g. }
- W2506301897 abstract "Determining how well we can efficiently compute approximate solutions to NP-hard problems is of great theoretical and practical interest. Typically the famous PCP theorem is used for showing that a problem has no algorithms computing good approximations. Unfortunately, for many problem this approach has failed. Nevertheless, for such problems, we may instead be able to show that a large subclass of algorithms cannot compute good approximations. This thesis takes this approach, concentrating on subclasses of algorithms defined by the LS and LS+ Lovasz-Schrijver hierarchies. These subclasses define hierarchies of algorithms where algorithms in higher levels (also called rounds) require more time, but may compute better approximations. Algorithms in the LS hierarchy are based on linear programming relaxations while those in the more powerful LS+ hierarchy are based on semidefinite programming relaxations. Most known approximation algorithms lie within the first two-three levels of the LS+ hierarchy, including the recent celebrated approximation algorithms of Goemans-Williamson [27] and Arora-Rao-Vazirani [7] for MAX-CUT and SPARSEST-CUT, respectively. So understanding the power of these algorithm families seems important. We obtain new lower bounds for the LS and LS + hierarchies for several important problems. In all cases the approximations we rule out in these hierarchies are not ruled out by known PCP-based arguments. Moreover, unlike PCP-based inapproximability results, all our results are unconditional and do not rely on any computational complexity assumptions. The lower bounds we prove are as follows: (1) For VERTEX COVER we show that Ω(log n) rounds of LS are needed to obtain 2 - e approximations and Ω(log 2 n) rounds are needed for 1.5 - e approximations. (2) For MAX-3SAT and SET COVER we show that Ω(n) rounds of LS + are needed for any non-trivial approximation. (3) For hypergraph VERTEX COVER on rank-k hypergraphs we show that Ω( n) rounds of LS+ are needed for k - 1 - e approximations. (4) For hypergraph VERTEX COVER on rank-k hypergraphs we show that Ω(log log n) rounds of LS are needed for k - e approximations." @default.
- W2506301897 created "2016-08-23" @default.
- W2506301897 creator A5074107236 @default.
- W2506301897 creator A5079951047 @default.
- W2506301897 date "2006-01-01" @default.
- W2506301897 modified "2023-09-23" @default.
- W2506301897 title "New lower bounds for approximation algorithms in the lovasz-schrijver hierarchy" @default.
- W2506301897 cites W1523265685 @default.
- W2506301897 cites W1560060719 @default.
- W2506301897 cites W1571037334 @default.
- W2506301897 cites W1587123489 @default.
- W2506301897 cites W1598148804 @default.
- W2506301897 cites W168093571 @default.
- W2506301897 cites W1972894929 @default.
- W2506301897 cites W1990313671 @default.
- W2506301897 cites W1999032440 @default.
- W2506301897 cites W2003159902 @default.
- W2506301897 cites W2004012902 @default.
- W2506301897 cites W2005412366 @default.
- W2506301897 cites W2010990954 @default.
- W2506301897 cites W2012329067 @default.
- W2506301897 cites W2019578639 @default.
- W2506301897 cites W2020632401 @default.
- W2506301897 cites W2026189949 @default.
- W2506301897 cites W204341840 @default.
- W2506301897 cites W2049143039 @default.
- W2506301897 cites W2053913299 @default.
- W2506301897 cites W2059187303 @default.
- W2506301897 cites W2068871408 @default.
- W2506301897 cites W2077397558 @default.
- W2506301897 cites W2084244318 @default.
- W2506301897 cites W2086653003 @default.
- W2506301897 cites W2095727035 @default.
- W2506301897 cites W2099677042 @default.
- W2506301897 cites W2100440346 @default.
- W2506301897 cites W2104727719 @default.
- W2506301897 cites W2106264302 @default.
- W2506301897 cites W2120358419 @default.
- W2506301897 cites W2127813745 @default.
- W2506301897 cites W2133263321 @default.
- W2506301897 cites W2133392939 @default.
- W2506301897 cites W2137118456 @default.
- W2506301897 cites W2137373403 @default.
- W2506301897 cites W2143698439 @default.
- W2506301897 cites W2146471456 @default.
- W2506301897 cites W2146823188 @default.
- W2506301897 cites W2148352980 @default.
- W2506301897 cites W2154933482 @default.
- W2506301897 cites W2158029166 @default.
- W2506301897 cites W2161439427 @default.
- W2506301897 cites W2165732281 @default.
- W2506301897 cites W2167508847 @default.
- W2506301897 cites W2570642804 @default.
- W2506301897 cites W2611804663 @default.
- W2506301897 cites W2917997019 @default.
- W2506301897 hasPublicationYear "2006" @default.
- W2506301897 type Work @default.
- W2506301897 sameAs 2506301897 @default.
- W2506301897 citedByCount "5" @default.
- W2506301897 countsByYear W25063018972014 @default.
- W2506301897 countsByYear W25063018972015 @default.
- W2506301897 countsByYear W25063018972020 @default.
- W2506301897 crossrefType "journal-article" @default.
- W2506301897 hasAuthorship W2506301897A5074107236 @default.
- W2506301897 hasAuthorship W2506301897A5079951047 @default.
- W2506301897 hasConcept C101901036 @default.
- W2506301897 hasConcept C11413529 @default.
- W2506301897 hasConcept C114614502 @default.
- W2506301897 hasConcept C118615104 @default.
- W2506301897 hasConcept C126255220 @default.
- W2506301897 hasConcept C132525143 @default.
- W2506301897 hasConcept C148764684 @default.
- W2506301897 hasConcept C162324750 @default.
- W2506301897 hasConcept C179799912 @default.
- W2506301897 hasConcept C311688 @default.
- W2506301897 hasConcept C31170391 @default.
- W2506301897 hasConcept C33923547 @default.
- W2506301897 hasConcept C34447519 @default.
- W2506301897 hasConcept C40687702 @default.
- W2506301897 hasConcept C41045048 @default.
- W2506301897 hasConcept C80899671 @default.
- W2506301897 hasConceptScore W2506301897C101901036 @default.
- W2506301897 hasConceptScore W2506301897C11413529 @default.
- W2506301897 hasConceptScore W2506301897C114614502 @default.
- W2506301897 hasConceptScore W2506301897C118615104 @default.
- W2506301897 hasConceptScore W2506301897C126255220 @default.
- W2506301897 hasConceptScore W2506301897C132525143 @default.
- W2506301897 hasConceptScore W2506301897C148764684 @default.
- W2506301897 hasConceptScore W2506301897C162324750 @default.
- W2506301897 hasConceptScore W2506301897C179799912 @default.
- W2506301897 hasConceptScore W2506301897C311688 @default.
- W2506301897 hasConceptScore W2506301897C31170391 @default.
- W2506301897 hasConceptScore W2506301897C33923547 @default.
- W2506301897 hasConceptScore W2506301897C34447519 @default.
- W2506301897 hasConceptScore W2506301897C40687702 @default.
- W2506301897 hasConceptScore W2506301897C41045048 @default.
- W2506301897 hasConceptScore W2506301897C80899671 @default.
- W2506301897 hasLocation W25063018971 @default.
- W2506301897 hasOpenAccess W2506301897 @default.
- W2506301897 hasPrimaryLocation W25063018971 @default.