Matches in SemOpenAlex for { <https://semopenalex.org/work/W2506473059> ?p ?o ?g. }
- W2506473059 abstract "In the present study, we developed and compared two artificial intelligences technique (AI) for simultaneous modelling and forecasting hourly dissolved oxygen (DO) in river ecosystem. The two techniques are: radial basis function neural network (RBFNN) and multilayer perceptron neural network (MLPNN). For the purpose of the study, we choose two stations from the United States Geological Survey: (USGS ID: 421015121471800) at Lost River Diversion Channel nr Klamath River, Oregon, USA (Latitude 42°10′15″, Longitude 121°47′18″ NAD83), with a total of 8703 data, and (USGS ID: 421401121480900) at Upper Klamath Lake at Link River Dam, Oregon USA (Latitude 42°14′01″, Longitude 121°48′09″ NAD83) with a total of 8552 data. The investigation is divided into two distinguished phase. Firstly, using four water quality variables that are, water pH, temperature (TE), specific conductance (SC), and sensor depth (SD); we compared five models (M1 to M5) with different combination of input variables. As a result of the first investigation we found that generally RBFNN outperform MLPNN according to the performances criteria calculated. In the second part of the study, six Different models (FM1 to FM6) having the same input data sets are developed for 1,12, 24,48,72 and 168 h ahead (in advance) forecasting. The performance of the RBFNN and MLPNN models in training, validation and testing sets are compared with the observed data. Our results reveal that the two models provided relatively similar results and they successfully forecasting DO with a high level of accuracy and the reliability of forecasting decreases with increasing the step ahead." @default.
- W2506473059 created "2016-08-23" @default.
- W2506473059 creator A5001907851 @default.
- W2506473059 date "2016-07-20" @default.
- W2506473059 modified "2023-10-16" @default.
- W2506473059 title "Simultaneous modelling and forecasting of hourly dissolved oxygen concentration (DO) using radial basis function neural network (RBFNN) based approach: a case study from the Klamath River, Oregon, USA" @default.
- W2506473059 cites W108641313 @default.
- W2506473059 cites W1268310917 @default.
- W2506473059 cites W152718072 @default.
- W2506473059 cites W1543849000 @default.
- W2506473059 cites W1947318678 @default.
- W2506473059 cites W1974083066 @default.
- W2506473059 cites W1983373379 @default.
- W2506473059 cites W1988115241 @default.
- W2506473059 cites W1989471229 @default.
- W2506473059 cites W2001270632 @default.
- W2506473059 cites W2001773650 @default.
- W2506473059 cites W2007181090 @default.
- W2506473059 cites W2007592554 @default.
- W2506473059 cites W2009088104 @default.
- W2506473059 cites W2020656512 @default.
- W2506473059 cites W2022173539 @default.
- W2506473059 cites W2027333203 @default.
- W2506473059 cites W2029748544 @default.
- W2506473059 cites W2037460094 @default.
- W2506473059 cites W2038474987 @default.
- W2506473059 cites W2045179876 @default.
- W2506473059 cites W2046936767 @default.
- W2506473059 cites W2047339211 @default.
- W2506473059 cites W2054069808 @default.
- W2506473059 cites W2056176941 @default.
- W2506473059 cites W2058998445 @default.
- W2506473059 cites W2062861257 @default.
- W2506473059 cites W2066508676 @default.
- W2506473059 cites W2067413593 @default.
- W2506473059 cites W2075146657 @default.
- W2506473059 cites W2079642859 @default.
- W2506473059 cites W2080901700 @default.
- W2506473059 cites W2085150186 @default.
- W2506473059 cites W2086472796 @default.
- W2506473059 cites W2088932912 @default.
- W2506473059 cites W2090612963 @default.
- W2506473059 cites W2113442785 @default.
- W2506473059 cites W2125675626 @default.
- W2506473059 cites W2137983211 @default.
- W2506473059 cites W2142230249 @default.
- W2506473059 cites W2143956139 @default.
- W2506473059 cites W2171277043 @default.
- W2506473059 cites W2234434066 @default.
- W2506473059 cites W2238249335 @default.
- W2506473059 cites W2248263087 @default.
- W2506473059 cites W2288701971 @default.
- W2506473059 cites W2290225909 @default.
- W2506473059 cites W2294130298 @default.
- W2506473059 cites W2296210273 @default.
- W2506473059 cites W2300726493 @default.
- W2506473059 cites W2306510195 @default.
- W2506473059 cites W2309032750 @default.
- W2506473059 cites W2312400300 @default.
- W2506473059 cites W2322402321 @default.
- W2506473059 cites W2323466450 @default.
- W2506473059 cites W2332474383 @default.
- W2506473059 cites W2334150231 @default.
- W2506473059 cites W2336215333 @default.
- W2506473059 cites W2339265226 @default.
- W2506473059 cites W2340579864 @default.
- W2506473059 cites W2344179904 @default.
- W2506473059 cites W2403227346 @default.
- W2506473059 cites W2419464021 @default.
- W2506473059 cites W2472764495 @default.
- W2506473059 cites W2474715578 @default.
- W2506473059 cites W2474743320 @default.
- W2506473059 cites W288531716 @default.
- W2506473059 cites W335820113 @default.
- W2506473059 cites W4300402905 @default.
- W2506473059 cites W842171740 @default.
- W2506473059 doi "https://doi.org/10.1007/s40808-016-0197-4" @default.
- W2506473059 hasPublicationYear "2016" @default.
- W2506473059 type Work @default.
- W2506473059 sameAs 2506473059 @default.
- W2506473059 citedByCount "21" @default.
- W2506473059 countsByYear W25064730592016 @default.
- W2506473059 countsByYear W25064730592017 @default.
- W2506473059 countsByYear W25064730592018 @default.
- W2506473059 countsByYear W25064730592019 @default.
- W2506473059 countsByYear W25064730592020 @default.
- W2506473059 countsByYear W25064730592021 @default.
- W2506473059 countsByYear W25064730592022 @default.
- W2506473059 countsByYear W25064730592023 @default.
- W2506473059 crossrefType "journal-article" @default.
- W2506473059 hasAuthorship W2506473059A5001907851 @default.
- W2506473059 hasBestOaLocation W25064730591 @default.
- W2506473059 hasConcept C122523270 @default.
- W2506473059 hasConcept C127313418 @default.
- W2506473059 hasConcept C13280743 @default.
- W2506473059 hasConcept C154945302 @default.
- W2506473059 hasConcept C179717631 @default.
- W2506473059 hasConcept C187320778 @default.
- W2506473059 hasConcept C2780554747 @default.
- W2506473059 hasConcept C39432304 @default.