Matches in SemOpenAlex for { <https://semopenalex.org/work/W2506537347> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2506537347 endingPage "133" @default.
- W2506537347 startingPage "109" @default.
- W2506537347 abstract "Weakly supervised classification tries to learn from data sets which are not certainly labeled. Many problems, with different natures of partial labeling, fit this description. In this paper, the novel problem of learning from positive-unlabeled proportions is presented. The provided examples are unlabeled, and the only class information available consists of the proportions of positive and unlabeled examples in different subsets of the training data set. We present a methodology that adapts to the different levels of class uncertainty to learn Bayesian network classifiers using an expectation-maximization strategy. It has been tested in a variety of artificial scenarios with different class uncertainty, as well as compared with two naive strategies that do not consider all the available class information. Finally, it has also been successfully tested in real data, collected from the embryo selection problem in assisted reproduction." @default.
- W2506537347 created "2016-08-23" @default.
- W2506537347 creator A5045973875 @default.
- W2506537347 creator A5050500830 @default.
- W2506537347 creator A5080161418 @default.
- W2506537347 date "2016-07-09" @default.
- W2506537347 modified "2023-09-30" @default.
- W2506537347 title "Learning from Proportions of Positive and Unlabeled Examples" @default.
- W2506537347 cites W1479807131 @default.
- W2506537347 cites W1530964327 @default.
- W2506537347 cites W1544144649 @default.
- W2506537347 cites W1817561967 @default.
- W2506537347 cites W1982601383 @default.
- W2506537347 cites W1985478413 @default.
- W2506537347 cites W2040500502 @default.
- W2506537347 cites W2046920025 @default.
- W2506537347 cites W2059671645 @default.
- W2506537347 cites W2066446909 @default.
- W2506537347 cites W2076092328 @default.
- W2506537347 cites W2090347203 @default.
- W2506537347 cites W2102176771 @default.
- W2506537347 cites W2103284199 @default.
- W2506537347 cites W2119387367 @default.
- W2506537347 cites W2130463115 @default.
- W2506537347 cites W2133303463 @default.
- W2506537347 cites W2142929121 @default.
- W2506537347 cites W2147242642 @default.
- W2506537347 cites W2357329924 @default.
- W2506537347 cites W4210997624 @default.
- W2506537347 cites W4236354166 @default.
- W2506537347 cites W767037412 @default.
- W2506537347 cites W2125586784 @default.
- W2506537347 doi "https://doi.org/10.1002/int.21832" @default.
- W2506537347 hasPublicationYear "2016" @default.
- W2506537347 type Work @default.
- W2506537347 sameAs 2506537347 @default.
- W2506537347 citedByCount "6" @default.
- W2506537347 countsByYear W25065373472017 @default.
- W2506537347 countsByYear W25065373472018 @default.
- W2506537347 countsByYear W25065373472019 @default.
- W2506537347 countsByYear W25065373472020 @default.
- W2506537347 countsByYear W25065373472021 @default.
- W2506537347 countsByYear W25065373472022 @default.
- W2506537347 crossrefType "journal-article" @default.
- W2506537347 hasAuthorship W2506537347A5045973875 @default.
- W2506537347 hasAuthorship W2506537347A5050500830 @default.
- W2506537347 hasAuthorship W2506537347A5080161418 @default.
- W2506537347 hasBestOaLocation W25065373471 @default.
- W2506537347 hasConcept C107673813 @default.
- W2506537347 hasConcept C119857082 @default.
- W2506537347 hasConcept C126255220 @default.
- W2506537347 hasConcept C136197465 @default.
- W2506537347 hasConcept C136389625 @default.
- W2506537347 hasConcept C154945302 @default.
- W2506537347 hasConcept C168136583 @default.
- W2506537347 hasConcept C177264268 @default.
- W2506537347 hasConcept C199360897 @default.
- W2506537347 hasConcept C2776330181 @default.
- W2506537347 hasConcept C2777212361 @default.
- W2506537347 hasConcept C33923547 @default.
- W2506537347 hasConcept C41008148 @default.
- W2506537347 hasConcept C50644808 @default.
- W2506537347 hasConcept C81917197 @default.
- W2506537347 hasConceptScore W2506537347C107673813 @default.
- W2506537347 hasConceptScore W2506537347C119857082 @default.
- W2506537347 hasConceptScore W2506537347C126255220 @default.
- W2506537347 hasConceptScore W2506537347C136197465 @default.
- W2506537347 hasConceptScore W2506537347C136389625 @default.
- W2506537347 hasConceptScore W2506537347C154945302 @default.
- W2506537347 hasConceptScore W2506537347C168136583 @default.
- W2506537347 hasConceptScore W2506537347C177264268 @default.
- W2506537347 hasConceptScore W2506537347C199360897 @default.
- W2506537347 hasConceptScore W2506537347C2776330181 @default.
- W2506537347 hasConceptScore W2506537347C2777212361 @default.
- W2506537347 hasConceptScore W2506537347C33923547 @default.
- W2506537347 hasConceptScore W2506537347C41008148 @default.
- W2506537347 hasConceptScore W2506537347C50644808 @default.
- W2506537347 hasConceptScore W2506537347C81917197 @default.
- W2506537347 hasFunder F4320321705 @default.
- W2506537347 hasIssue "2" @default.
- W2506537347 hasLocation W25065373471 @default.
- W2506537347 hasOpenAccess W2506537347 @default.
- W2506537347 hasPrimaryLocation W25065373471 @default.
- W2506537347 hasRelatedWork W2981850339 @default.
- W2506537347 hasRelatedWork W3046775127 @default.
- W2506537347 hasRelatedWork W3094076422 @default.
- W2506537347 hasRelatedWork W3162567751 @default.
- W2506537347 hasRelatedWork W3210156800 @default.
- W2506537347 hasRelatedWork W4221088574 @default.
- W2506537347 hasRelatedWork W4226172683 @default.
- W2506537347 hasRelatedWork W4249546094 @default.
- W2506537347 hasRelatedWork W4285260836 @default.
- W2506537347 hasRelatedWork W4308823300 @default.
- W2506537347 hasVolume "32" @default.
- W2506537347 isParatext "false" @default.
- W2506537347 isRetracted "false" @default.
- W2506537347 magId "2506537347" @default.
- W2506537347 workType "article" @default.