Matches in SemOpenAlex for { <https://semopenalex.org/work/W2506935491> ?p ?o ?g. }
- W2506935491 endingPage "230" @default.
- W2506935491 startingPage "219" @default.
- W2506935491 abstract "Response surface methodology (RSM), adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN) were tested in the modeling of acid pretreatment of palm kernel oil with a very high acid value (22 ± 0.1 mg KOH/g oil). This was investigated considering methanol/oil molar ratio (1.3:1–3.8:1), catalyst loading (0.3–0.5 vol.%) and time (20–40 min) using Box Behnken design. The developed RSM, ANFIS and ANN models described the process with high accuracy (coefficient of determination, R2 > 0.99 and average absolute deviation, AAD = 2.72–23.96%). RSM, RSM coupled with generic algorithm (GA), ANFIS-GA and ANN-GA were applied to optimize the process for best operating condition and ANN-GA gave the minimum acid value (0.64 mg KOH/g) under the best optimal condition of methanol/oil molar ratio 3.4:1, catalyst loading 0.39 vol.% and time 24.06 min. Based on the statistical indices obtained, RSM performed the least, while ANN marginally outperformed ANFIS. GA proved to be superior to RSM in the optimization of the esterification process." @default.
- W2506935491 created "2016-08-23" @default.
- W2506935491 creator A5009015257 @default.
- W2506935491 creator A5021720042 @default.
- W2506935491 creator A5027195765 @default.
- W2506935491 creator A5030816222 @default.
- W2506935491 creator A5080316446 @default.
- W2506935491 creator A5061549746 @default.
- W2506935491 date "2016-09-01" @default.
- W2506935491 modified "2023-10-12" @default.
- W2506935491 title "Predictive capability evaluation of RSM, ANFIS and ANN: A case of reduction of high free fatty acid of palm kernel oil via esterification process" @default.
- W2506935491 cites W1531931873 @default.
- W2506935491 cites W1903621931 @default.
- W2506935491 cites W1965667065 @default.
- W2506935491 cites W1967908849 @default.
- W2506935491 cites W1987635472 @default.
- W2506935491 cites W1988094199 @default.
- W2506935491 cites W1989687608 @default.
- W2506935491 cites W2015490356 @default.
- W2506935491 cites W2021411750 @default.
- W2506935491 cites W2022223561 @default.
- W2506935491 cites W2023765892 @default.
- W2506935491 cites W2028540208 @default.
- W2506935491 cites W2033301200 @default.
- W2506935491 cites W2042880492 @default.
- W2506935491 cites W2047752159 @default.
- W2506935491 cites W2054579768 @default.
- W2506935491 cites W2057850952 @default.
- W2506935491 cites W2063159040 @default.
- W2506935491 cites W2067073850 @default.
- W2506935491 cites W2072318027 @default.
- W2506935491 cites W2076019128 @default.
- W2506935491 cites W2077521360 @default.
- W2506935491 cites W2088801907 @default.
- W2506935491 cites W2091297140 @default.
- W2506935491 cites W2092997181 @default.
- W2506935491 cites W2099295554 @default.
- W2506935491 cites W2101296351 @default.
- W2506935491 cites W2106527482 @default.
- W2506935491 cites W2136422811 @default.
- W2506935491 cites W2154864130 @default.
- W2506935491 cites W2172716358 @default.
- W2506935491 cites W2183174234 @default.
- W2506935491 cites W2278872347 @default.
- W2506935491 cites W2293483347 @default.
- W2506935491 cites W2321324033 @default.
- W2506935491 cites W2338427865 @default.
- W2506935491 doi "https://doi.org/10.1016/j.enconman.2016.07.030" @default.
- W2506935491 hasPublicationYear "2016" @default.
- W2506935491 type Work @default.
- W2506935491 sameAs 2506935491 @default.
- W2506935491 citedByCount "105" @default.
- W2506935491 countsByYear W25069354912017 @default.
- W2506935491 countsByYear W25069354912018 @default.
- W2506935491 countsByYear W25069354912019 @default.
- W2506935491 countsByYear W25069354912020 @default.
- W2506935491 countsByYear W25069354912021 @default.
- W2506935491 countsByYear W25069354912022 @default.
- W2506935491 countsByYear W25069354912023 @default.
- W2506935491 crossrefType "journal-article" @default.
- W2506935491 hasAuthorship W2506935491A5009015257 @default.
- W2506935491 hasAuthorship W2506935491A5021720042 @default.
- W2506935491 hasAuthorship W2506935491A5027195765 @default.
- W2506935491 hasAuthorship W2506935491A5030816222 @default.
- W2506935491 hasAuthorship W2506935491A5061549746 @default.
- W2506935491 hasAuthorship W2506935491A5080316446 @default.
- W2506935491 hasConcept C105795698 @default.
- W2506935491 hasConcept C119857082 @default.
- W2506935491 hasConcept C128990827 @default.
- W2506935491 hasConcept C150077022 @default.
- W2506935491 hasConcept C154945302 @default.
- W2506935491 hasConcept C170295934 @default.
- W2506935491 hasConcept C178790620 @default.
- W2506935491 hasConcept C185592680 @default.
- W2506935491 hasConcept C186108316 @default.
- W2506935491 hasConcept C192562407 @default.
- W2506935491 hasConcept C195975749 @default.
- W2506935491 hasConcept C2778814971 @default.
- W2506935491 hasConcept C2779607525 @default.
- W2506935491 hasConcept C2988237154 @default.
- W2506935491 hasConcept C31903555 @default.
- W2506935491 hasConcept C33923547 @default.
- W2506935491 hasConcept C41008148 @default.
- W2506935491 hasConcept C50644808 @default.
- W2506935491 hasConcept C53477387 @default.
- W2506935491 hasConcept C55493867 @default.
- W2506935491 hasConcept C58166 @default.
- W2506935491 hasConceptScore W2506935491C105795698 @default.
- W2506935491 hasConceptScore W2506935491C119857082 @default.
- W2506935491 hasConceptScore W2506935491C128990827 @default.
- W2506935491 hasConceptScore W2506935491C150077022 @default.
- W2506935491 hasConceptScore W2506935491C154945302 @default.
- W2506935491 hasConceptScore W2506935491C170295934 @default.
- W2506935491 hasConceptScore W2506935491C178790620 @default.
- W2506935491 hasConceptScore W2506935491C185592680 @default.
- W2506935491 hasConceptScore W2506935491C186108316 @default.
- W2506935491 hasConceptScore W2506935491C192562407 @default.
- W2506935491 hasConceptScore W2506935491C195975749 @default.