Matches in SemOpenAlex for { <https://semopenalex.org/work/W2507675648> ?p ?o ?g. }
- W2507675648 endingPage "3367" @default.
- W2507675648 startingPage "3360" @default.
- W2507675648 abstract "Amphiphilic polymers have emerged as an important class of materials owing to their ability to produce a diverse range of self-assembled structures with container properties that can be used to address growing challenges in biomedical applications. Thus, in-depth understanding on their aggregation properties is important fundamentally as well as from an application viewpoint. In this article we describe utilization of fluorescence resonance energy transfer (FRET) as a powerful tool to elucidate various physical properties of amphiphilic block copolymer aggregates at very low polymer concentration (∼10–7 M) which otherwise are difficult to achieve using other commonly used techniques such as microscopy, scattering, or external probe based spectroscopic techniques. We synthesized a prepolymer based on PEO-b-PMMA-co-PHEMA and subsequently utilized the hydroxy groups of the HEMA units to covalently attach with either a green (D) or a red (A) fluorescent dye (D–A pair suitable for FRET) to get D- and A-labeled amphiphilic polymers with similar spatial distribution of these chromophores in the hydrophobic block of the two polymers. Coassembly of red and green labeled polymers in micellar aggregates results in highly efficient FRET while no FRET is observed when they remain as unimer. This was exploited to study the micellization process by solvent, concentration, time, and pH dependent FRET studies either by mixing preformed aggregates of the two polymers or by inducing aggregation in mixture of unimers. Contrary to existing perception, our studies revealed exceptionally slow dynamics (mixing time >50 h), very low critical aggregation concentration (<10–7 M), remarkably high tolerance to good solvent, and intriguing solvent induced swelling followed by disassembly of the micellar aggregate from this rather simple diblock copolymer. We explicitly show why the FRET based tool stands out among other techniques to probe such detail physical characteristics of micellar aggregates with precision at very dilute concentration which otherwise appears to be a rather difficult task. More interestingly, we provide the rationale behind the exceptionally high stability of these micelles by providing evidence of noncovalent core cross-linking by H-bonding among the few unreacted OH groups present in the hydrophobic block. When this parameter was lifted off by either protonation at acidic pH or protecting the hydroxyl group by acetyl group, FRET studies showed very fast dynamics of the micellar aggregations, confirming the free OH groups in the hydrophobic domain are responsible for noncovalent core cross-linking leading to the unusual stability of the micelles." @default.
- W2507675648 created "2016-09-16" @default.
- W2507675648 creator A5004839096 @default.
- W2507675648 creator A5025777424 @default.
- W2507675648 creator A5060000490 @default.
- W2507675648 date "2015-05-08" @default.
- W2507675648 modified "2023-10-11" @default.
- W2507675648 title "Insights into Noncovalently Core Cross-Linked Block Copolymer Micelles by Fluorescence Resonance Energy Transfer (FRET) Studies" @default.
- W2507675648 cites W1969394065 @default.
- W2507675648 cites W1972738998 @default.
- W2507675648 cites W1973209384 @default.
- W2507675648 cites W1978679905 @default.
- W2507675648 cites W1985600747 @default.
- W2507675648 cites W1994635488 @default.
- W2507675648 cites W1998794754 @default.
- W2507675648 cites W2001413029 @default.
- W2507675648 cites W2008648326 @default.
- W2507675648 cites W2016382049 @default.
- W2507675648 cites W2027432937 @default.
- W2507675648 cites W2030243013 @default.
- W2507675648 cites W2030498396 @default.
- W2507675648 cites W2030855909 @default.
- W2507675648 cites W2032255436 @default.
- W2507675648 cites W2036640151 @default.
- W2507675648 cites W2043461452 @default.
- W2507675648 cites W2057017164 @default.
- W2507675648 cites W2061936146 @default.
- W2507675648 cites W2075370047 @default.
- W2507675648 cites W2075717437 @default.
- W2507675648 cites W2075925098 @default.
- W2507675648 cites W2082587127 @default.
- W2507675648 cites W2087681930 @default.
- W2507675648 cites W2094503807 @default.
- W2507675648 cites W2122844610 @default.
- W2507675648 cites W2127967218 @default.
- W2507675648 cites W2129995310 @default.
- W2507675648 cites W2140595006 @default.
- W2507675648 cites W2160892803 @default.
- W2507675648 cites W2312689801 @default.
- W2507675648 cites W2316134754 @default.
- W2507675648 cites W2318363361 @default.
- W2507675648 cites W2320865881 @default.
- W2507675648 cites W2325543066 @default.
- W2507675648 cites W2330196407 @default.
- W2507675648 doi "https://doi.org/10.1021/acs.macromol.5b00559" @default.
- W2507675648 hasPublicationYear "2015" @default.
- W2507675648 type Work @default.
- W2507675648 sameAs 2507675648 @default.
- W2507675648 citedByCount "31" @default.
- W2507675648 countsByYear W25076756482015 @default.
- W2507675648 countsByYear W25076756482016 @default.
- W2507675648 countsByYear W25076756482017 @default.
- W2507675648 countsByYear W25076756482018 @default.
- W2507675648 countsByYear W25076756482019 @default.
- W2507675648 countsByYear W25076756482020 @default.
- W2507675648 countsByYear W25076756482021 @default.
- W2507675648 countsByYear W25076756482022 @default.
- W2507675648 countsByYear W25076756482023 @default.
- W2507675648 crossrefType "journal-article" @default.
- W2507675648 hasAuthorship W2507675648A5004839096 @default.
- W2507675648 hasAuthorship W2507675648A5025777424 @default.
- W2507675648 hasAuthorship W2507675648A5060000490 @default.
- W2507675648 hasConcept C11268172 @default.
- W2507675648 hasConcept C121332964 @default.
- W2507675648 hasConcept C127413603 @default.
- W2507675648 hasConcept C14631669 @default.
- W2507675648 hasConcept C155672457 @default.
- W2507675648 hasConcept C15920480 @default.
- W2507675648 hasConcept C171250308 @default.
- W2507675648 hasConcept C178790620 @default.
- W2507675648 hasConcept C184651966 @default.
- W2507675648 hasConcept C185592680 @default.
- W2507675648 hasConcept C188027245 @default.
- W2507675648 hasConcept C192468462 @default.
- W2507675648 hasConcept C192562407 @default.
- W2507675648 hasConcept C42360764 @default.
- W2507675648 hasConcept C521977710 @default.
- W2507675648 hasConcept C62520636 @default.
- W2507675648 hasConcept C67407626 @default.
- W2507675648 hasConcept C75473681 @default.
- W2507675648 hasConcept C91881484 @default.
- W2507675648 hasConcept C96305047 @default.
- W2507675648 hasConceptScore W2507675648C11268172 @default.
- W2507675648 hasConceptScore W2507675648C121332964 @default.
- W2507675648 hasConceptScore W2507675648C127413603 @default.
- W2507675648 hasConceptScore W2507675648C14631669 @default.
- W2507675648 hasConceptScore W2507675648C155672457 @default.
- W2507675648 hasConceptScore W2507675648C15920480 @default.
- W2507675648 hasConceptScore W2507675648C171250308 @default.
- W2507675648 hasConceptScore W2507675648C178790620 @default.
- W2507675648 hasConceptScore W2507675648C184651966 @default.
- W2507675648 hasConceptScore W2507675648C185592680 @default.
- W2507675648 hasConceptScore W2507675648C188027245 @default.
- W2507675648 hasConceptScore W2507675648C192468462 @default.
- W2507675648 hasConceptScore W2507675648C192562407 @default.
- W2507675648 hasConceptScore W2507675648C42360764 @default.
- W2507675648 hasConceptScore W2507675648C521977710 @default.
- W2507675648 hasConceptScore W2507675648C62520636 @default.